Downloads: 136
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
00127094-2405388.pdf | 285.08 kB | Adobe PDF | View/Open |
Title: | Poincaré–Birkhoff–Witt bases and Khovanov–Lauda–Rouquier algebras |
Authors: | Kato, Syu |
Author's alias: | 加藤, 周 |
Issue Date: | Feb-2014 |
Publisher: | Duke University Press |
Journal title: | Duke Mathematical Journal |
Volume: | 163 |
Issue: | 3 |
Start page: | 619 |
End page: | 663 |
Abstract: | We generalize Lusztig’s geometric construction of the Poincaré–Birkhoff–Witt (PBW) bases of finite quantum groups of type ADE under the framework of Varagnolo and Vasserot. In particular, every PBW basis of such quantum groups is proven to yield a semi-orthogonal collection in the module category of the Khovanov–Lauda–Rouquier (KLR) algebras. This enables us to prove Lusztig’s conjecture on the positivity of the canonical (lower global) bases in terms of the (lower) PBW bases. In addition, we verify Kashiwara’s problem on the finiteness of the global dimensions of the KLR algebras of type ADE. |
Rights: | ©2014 Duke University Press This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/187073 |
DOI(Published Version): | 10.1215/00127094-2405388 |
Appears in Collections: | Journal Articles |

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.