このアイテムのアクセス数: 649
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
transele.E97.C.280.pdf | 1.16 MB | Adobe PDF | 見る/開く |
タイトル: | Hypersphere Sampling for Accelerating High-Dimension and Low-Failure Probability Circuit-Yield Analysis |
著者: | HAGIWARA, Shiho DATE, Takanori MASU, Kazuya SATO, Takashi ![]() ![]() ![]() |
著者名の別形: | 佐藤, 高史 |
キーワード: | design for manufacturing Monte Carlo method importance sampling SRAM process variation yield norm minimization Gaussian mixture models clustering hypersphere sampling |
発行日: | 1-Apr-2014 |
出版者: | IEICE |
誌名: | IEICE Transactions on Electronics |
巻: | E97.C |
号: | 4 |
開始ページ: | 280 |
終了ページ: | 288 |
抄録: | This paper proposes a novel and an efficient method termed hypersphere sampling to estimate the circuit yield of low-failure probability with a large number of variable sources. Importance sampling using a mean-shift Gaussian mixture distribution as an alternative distribution is used for yield estimation. Further, the proposed method is used to determine the shift locations of the Gaussian distributions. This method involves the bisection of cones whose bases are part of the hyperspheres, in order to locate probabilistically important regions of failure; the determination of these regions accelerates the convergence speed of importance sampling. Clustering of the failure samples determines the required number of Gaussian distributions. Successful static random access memory (SRAM) yield estimations of 6- to 24-dimensional problems are presented. The number of Monte Carlo trials has been reduced by 2-5 orders of magnitude as compared to conventional Monte Carlo simulation methods. |
著作権等: | © 2014 The Institute of Electronics, Information and Communication Engineers |
URI: | http://hdl.handle.net/2433/188883 |
DOI(出版社版): | 10.1587/transele.E97.C.280 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。