Access count of this item: 229

Files in This Item:
File Description SizeFormat 
S1474748013000169.pdf292.59 kBAdobe PDFView/Open
Title: Microlocal Euler classes and Hochschild homology
Authors: Kashiwara, Masaki
Schapira, Pierre
Author's alias: 柏原, 正樹
Keywords: sheaves
D-modules
microlocal sheaf theory
Euler classes
Issue Date: Jul-2014
Publisher: Cambridge University Press
Journal title: Journal of the Institute of Mathematics of Jussieu
Volume: 13
Issue: 03
Start page: 487
End page: 516
Abstract: We define the notion of a trace kernel on a manifold M. Roughly speaking, it is a sheaf on M×M for which the formalism of Hochschild homology applies. We associate a microlocal Euler class with such a kernel, a cohomology class with values in the relative dualizing complex of the cotangent bundle T∗M over M, and we prove that this class is functorial with respect to the composition of kernels.
Rights: © Cambridge University Press 2013
この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
This is not the published version. Please cite only the published version.
URI: http://hdl.handle.net/2433/188908
DOI(Published Version): 10.1017/S1474748013000169
Appears in Collections:Journal Articles

Show full item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.