Downloads: 147

Files in This Item:
File Description SizeFormat 
PhysRevD.90.123515.pdf938.12 kBAdobe PDFView/Open
Title: Regularized cosmological power spectrum and correlation function in modified gravity models
Authors: Taruya, Atsushi  kyouindb  KAKEN_id  orcid (unconfirmed)
Nishimichi, Takahiro  kyouindb  KAKEN_id  orcid (unconfirmed)
Bernardeau, Francis
Hiramatsu, Takashi
Koyama, Kazuya
Author's alias: 樽家, 篤史
Issue Date: 12-Dec-2014
Publisher: American Physical Society
Journal title: Physical Review D
Volume: 90
Issue: 12
Thesis number: 123515
Abstract: Based on the multipoint propagator expansion, we present resummed perturbative calculations for cosmological power spectra and correlation functions in the context of modified gravity. In a wide class of modified gravity models that have a screening mechanism to recover general relativity (GR) on small scales, we apply the eikonal approximation to derive the governing equation for resummed propagator that partly includes the nonperturbative effect in the high-k limit. The resultant propagator in the high-k limit contains the new corrections arising from the screening mechanism as well as the standard exponential damping. We explicitly derive the expression for new high-k contributions in specific modified gravity models, and find that in the case of f(R) gravity for a currently constrained model parameter, the corrections are basically of the subleading order and can be neglected. Thus, in f(R) gravity, similarly to the GR case, we can analytically construct the regularized propagator that reproduces both the resummed high-k behavior and the low-k results computed with standard perturbation theory, consistently taking account of the nonlinear modification of gravity valid at large scales. With the regularized multipoint propagators, we give predictions for power spectrum and correlation function at one-loop order, and compare those with N-body simulations in f(R) gravity model. As an important application, we also discuss the redshift-space distortions and compute the anisotropic power spectra and correlation functions.
Rights: © 2014 American Physical Society
DOI(Published Version): 10.1103/PhysRevD.90.123515
Appears in Collections:Journal Articles

Show full item record

Export to RefWorks

Export Format: 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.