このアイテムのアクセス数: 322
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
978-1-62703-341-1.pdf | 148.87 kB | Adobe PDF | 見る/開く |
タイトル: | An in silico model for interpreting polypharmacology in drug-target networks. |
著者: | Takigawa, Ichigaku ![]() ![]() ![]() Tsuda, Koji Mamitsuka, Hiroshi ![]() ![]() ![]() |
著者名の別形: | 馬見塚, 拓 |
キーワード: | Frequent pattern mining Graphs Strings Likelihood-ratio test Polypharmacology Drug–target networks |
発行日: | 5-Mar-2013 |
出版者: | Humana Press |
誌名: | Methods in molecular biology |
巻: | 993 |
開始ページ: | 67 |
終了ページ: | 80 |
抄録: | Recent analysis on polypharmacology leads to the idea that only small fragments of drugs and targets are a key to understanding their interactions forming polypharmacology. This idea motivates us to build an in silico approach of finding significant substructure patterns from drug-target (molecular graph-amino acid sequence) pairs. This article introduces an efficient in silico method for enumerating, from given drug-target pairs, all frequent subgraph-subsequence pairs, which can then be further examined by hypothesis testing for statistical significance. Unique features of the method are its scalability, computational efficiency, and technical soundness in terms of computer science and statistics. The presented method was applied to 11, 219 drug-target pairs in DrugBank to obtain significant substructure pairs, which can divide most of the original 11, 219 pairs into eight highly exclusive clusters, implying that the obtained substructure pairs are indispensable components for interpreting polypharmacology. |
記述: | <Book Title> In Silico Models for Drug Discovery |
著作権等: | The final publication is available at Springer via http://dx.doi.org/10.1007/978-1-62703-342-8_5 This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/196848 |
DOI(出版社版): | 10.1007/978-1-62703-342-8_5 |
PubMed ID: | 23568464 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。