ダウンロード数: 1974
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
PhysRevLett.115.205901.pdf | 609.34 kB | Adobe PDF | 見る/開く |
タイトル: | Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization |
著者: | Seko, Atsuto https://orcid.org/0000-0002-2473-3837 (unconfirmed) Togo, Atsushi Hayashi, Hiroyuki Tsuda, Koji Chaput, Laurent Tanaka, Isao https://orcid.org/0000-0002-4616-118X (unconfirmed) |
著者名の別形: | 世古, 敦人 東後, 篤史 林, 博之 津田, 宏治 田中, 功 |
発行日: | Nov-2015 |
出版者: | American Physical Society (APS) |
誌名: | Physical Review Letters |
巻: | 115 |
号: | 20 |
論文番号: | 205901 |
抄録: | Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV, which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized. |
記述: | マテリアルズ・インフォマティクス手法により超低熱伝導物質を高効率に多数発見 -材料科学と情報科学の融合研究に革新的成果-. 京都大学プレスリリース. 2015-11-13. |
著作権等: | © 2015 American Physical Society |
URI: | http://hdl.handle.net/2433/201594 |
DOI(出版社版): | 10.1103/PhysRevLett.115.205901 |
PubMed ID: | 26613454 |
関連リンク: | https://www.kyoto-u.ac.jp/ja/research-news/2015-11-13 |
出現コレクション: | 学術雑誌掲載論文等 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。