このアイテムのアクセス数: 339

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
PhysRevE.92.052710.pdf786.34 kBAdobe PDF見る/開く
タイトル: Learning in neural networks based on a generalized fluctuation theorem
著者: Hayakawa, Takashi
Aoyagi, Toshio  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-8391-0565 (unconfirmed)
著者名の別形: 早川, 隆
青柳, 富誌生
発行日: 9-Nov-2015
出版者: American Physical Society (APS)
誌名: Physical Review E
巻: 92
号: 5
論文番号: 052710
抄録: Information maximization has been investigated as a possible mechanism of learning governing the self-organization that occurs within the neural systems of animals. Within the general context of models of neural systems bidirectionally interacting with environments, however, the role of information maximization remains to be elucidated. For bidirectionally interacting physical systems, universal laws describing the fluctuation they exhibit and the information they possess have recently been discovered. These laws are termed fluctuation theorems. In the present study, we formulate a theory of learning in neural networks bidirectionally interacting with environments based on the principle of information maximization. Our formulation begins with the introduction of a generalized fluctuation theorem, employing an interpretation appropriate for the present application, which differs from the original thermodynamic interpretation. We analytically and numerically demonstrate that the learning mechanism presented in our theory allows neural networks to efficiently explore their environments and optimally encode information about them.
著作権等: © 2015 American Physical Society.
URI: http://hdl.handle.net/2433/216020
DOI(出版社版): 10.1103/PhysRevE.92.052710
PubMed ID: 26651726
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。