このアイテムのアクセス数: 182
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.phpro.2015.12.030.pdf | 215.5 kB | Adobe PDF | 見る/開く |
タイトル: | Correlation Effects in One-Dimensional Quasiperiodic Anderson-Lattice Model |
著者: | Matsuda, Fuyuki Tezuka, Masaki ![]() ![]() ![]() Kawakami, Norio ![]() ![]() |
著者名の別形: | 松田, 冬樹 手塚, 真樹 川上, 則雄 |
キーワード: | Anderson-lattice model DMRG Quasiperiodicity |
発行日: | 2015 |
出版者: | Elsevier B.V. |
誌名: | Physics Procedia |
巻: | 75 |
開始ページ: | 245 |
終了ページ: | 251 |
抄録: | We consider the one-dimensional (1D) quasiperiodic Anderson-lattice model, which has quasiperiodically ordered impurities. The sites with an f-orbital are ordered as a "Fibonacci word", one way to form 1D quasiperiodic orderings. To treat the correlation effect precisely, we use the density matrix renormalization group (DMRG) method. We show that the spin correlation function in the quasiperiodic system gives a characteristic pattern. Also, by analyzing the f-electron number and its fluctuation, we find that a valence transition, which usually occurs in the periodic Anderson model when the on-site interorbital interaction is large, is not sharp in the quasiperiodic system. Finally, we discuss the properties of the quasiperiodic Anderson-lattice model, comparing them against the Anderson-lattice model with randomly located f-orbitals. We find that the quasiperiodic Anderson-lattice model has a similar property to the periodic Anderson model for spin correlation, but also has a similar property to the Anderson-lattice model with randomly located f-orbitals for the valence fluctuation. |
記述: | 20th International Conference on Magnetism, ICM 2015. |
著作権等: | © 2015 The Authors. Published by Elsevier B.V. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License <http://creativecommons.org/licenses/by-nc-nd/4.0/>. |
URI: | http://hdl.handle.net/2433/216132 |
DOI(出版社版): | 10.1016/j.phpro.2015.12.030 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。