Access count of this item: 86

Files in This Item:
File Description SizeFormat 
journal.pone.0180658.pdf6.88 MBAdobe PDFView/Open
Title: Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae
Authors: Suzuki, Takeshi
España, María Urizarna
Nunes, Maria Andreia
Zhurov, Vladimir
Dermauw, Wannes
Osakabe, Masahiro  kyouindb  KAKEN_id
Van Leeuwen, Thomas
Grbic, Miodrag
Grbic, Vojislava
Author's alias: 刑部, 正博
Issue Date: 7-Jul-2017
Publisher: Public Library of Science (PLoS)
Journal title: PLOS ONE
Volume: 12
Issue: 7
Thesis number: e0180658
Abstract: The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented. However, to identify biological and evolutionary roles of T. urticae genes and proteins, it is necessary to develop methods for the efficient manipulation of mite gene function or protein activity. Here, we describe protocols developed for the delivery of small molecules into spider mites. Starting with mite maintenance and the preparation of the experimental mite populations of developmentally synchronized larvae and adults, we describe 3 methods for delivery of small molecules including artificial diet, leaf coating, and soaking. The presented results define critical steps in these methods and demonstrate that they can successfully deliver tracer dyes into mites. Described protocols provide guidelines for high-throughput setups for delivery of experimental compounds that could be used in reverse genetics platforms to modulate gene expression or protein activity, or for screens focused on discovery of new molecules for mite control. In addition, described protocols could be adapted for other Tetranychidae and related species of economic importance such as Varroa, dust and poultry mites.
Rights: © 2017 Suzuki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
DOI(Published Version): 10.1371/journal.pone.0180658
Appears in Collections:Journal Articles

Show full item record

Export to RefWorks

Export Format: 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.