このアイテムのアクセス数: 3417

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.ets_21(2)_220..pdf687.92 kBAdobe PDF見る/開く
タイトル: Applying Learning Analytics for the Early Prediction of Students' Academic Performance in Blended Learning
著者: Lu, T. H. Owen
Huang, Q. Y. Anna
Huang, H. C. Jeff
Lin, Q. J. Albert
Ogata, Hiroaki
Yang, H. J. Stephen
著者名の別形: 緒方, 広明
キーワード: Learning analytics
Educational big data
MOOCs
Blended learning
Principal component regression
発行日: Apr-2018
出版者: International Forum of Educational Technology & Society
誌名: Educational Technology & Society
巻: 21
号: 2
開始ページ: 220
終了ページ: 232
抄録: Blended learning combines online digital resources with traditional classroom activities and enables students to attain higher learning performance through well-defined interactive strategies involving online and traditional learning activities. Learning analytics is a conceptual framework and as a part of our Precision education used to analyze and predict students' performance and provide timely interventions based on student learning profiles. This study applied learning analytics and educational big data approaches for the early prediction of students' final academic performance in a blended Calculus course. Real data with 21 variables were collected from the proposed course, consisting of video-viewing behaviors, out-of-class practice behaviors, homework and quiz scores, and after-school tutoring. This study applied principal component regression to predict students' final academic performance. The experimental results show that students' final academic performance could be predicted when only one-third of the semester had elapsed. In addition, we identified seven critical factors that affect students' academic performance, consisting of four online factors and three traditional factors. The results showed that the blended data set combining online and traditional critical factors had the highest predictive performance.
著作権等: This article of the Journal of Educational Technology & Society is available under Creative Commons CC-BY-ND-NC 3.0 license (https://creativecommons.org/licenses/by-nc-nd/3.0/).
URI: http://hdl.handle.net/2433/231307
DOI(出版社版): 10.30191/ETS.201804_21(2).0019
関連リンク: http://www.jstor.org/stable/26388400
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。