このアイテムのアクセス数: 172
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s41598-017-18605-2.pdf | 3.27 MB | Adobe PDF | 見る/開く |
タイトル: | Room temperature stable film formation of π-conjugated organic molecules on 3d magnetic substrate |
著者: | Inami, Eiichi Shimasaki, Mikio Yorimitsu, Hideki ![]() ![]() ![]() Yamada, Toyo Kazu |
著者名の別形: | 依光, 英樹 |
発行日: | 10-Jan-2018 |
出版者: | Springer Nature |
誌名: | Scientific Reports |
巻: | 8 |
論文番号: | 353 |
抄録: | An important step toward molecule-based electronics is to realize a robust and well-ordered molecular network at room temperature. To this end, one key challenge is tuning the molecule–substrate electronic interactions that influence not only the molecular selfassembly but also the stability of the resulting structures. In this study, we investigate the film formation of π-conjugated metal-free phthalocyanine molecules on a 3d-bcc-Fe(001) whisker substrate at 300 K by using ultra-high-vacuum scanning tunneling microscopy. On bare Fe(001), hybridization between the molecular π and the Fe(001) d-states prevents the molecular assembly, resulting in the disordered patchy structures. The second- and third-layer molecules form densely packed films, while the morphologies show clear difference. The second-layer molecules partially form p(5 × 5)-ordered films with the rectangular edges aligned along the [100] and [010] directions, while the edges of the third-layer films are rounded. Remarkably, such film morphologies are stable even at 300 K. These findings suggest that the molecular self-assembly and the resulting morphologies in the second and third layers are affected by the substrate bcc(001), despite that the Fe-d states hybridize only with the first-layer molecules. The possible mechanism is discussed with the kinetic Monte Carlo simulation. |
著作権等: | © The Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
URI: | http://hdl.handle.net/2433/234510 |
DOI(出版社版): | 10.1038/s41598-017-18605-2 |
PubMed ID: | 29321657 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。