このアイテムのアクセス数: 374

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
15732479.2018.1436572.pdf937.08 kBAdobe PDF見る/開く
タイトル: Long-term bridge health monitoring and performance assessment based on a Bayesian approach
著者: KIM, CHUL-WOO  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2727-6037 (unconfirmed)
Zhang, Yi
Wang, Ziran
Morita, Tomoaki
Oshima, Yoshinobu
著者名の別形: 金, 哲佑
キーワード: Autoregressive model
Bayesian statistics
bridge health monitoring
damage detection
Kalman filter
long-term assessment
real bridge
発行日: 2018
出版者: Taylor & Francis
誌名: Structure and Infrastructure Engineering
巻: 14
号: 7
開始ページ: 883
終了ページ: 894
抄録: This study presents a damage detection approach for the long-term health monitoring of bridge structures. The Bayesian approach comprising both Bayesian regression and Bayesian hypothesis testing is proposed to detect the structural changes in an in-service seven-span steel plate girder bridge with Gerber system. Both temperature and vehicle weight effects are accounted in the analysis. The acceleration responses at four points of the bridge span are utilised in this investigation. The data covering three different time periods are used in the bridge health monitoring (BHM). Regression analyses showed that the autoregressive exogenous model considering both temperature and vehicle weight effects has the best performance. The Bayesian factor is found to be a sensitive damage indicator in the BHM. The Bayesian approach can provide updated information in the real-time monitoring of bridge structures. The information provided from the Bayesian approach is convenient and easy to handle compared to the traditional approaches. The applicability of this approach is also validated in a case study where artificially generated damage data is added to the observation data.
著作権等: This is an Accepted Manuscript of an article published by Taylor & Francis in Structures and Infrastructure Engineering on 12 March 2018, available online: http://www.tandfonline.com/10.1080/15732479.2018.1436572.
The full-text file will be made open to the public on 12 March 2019 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.
This is not the published version. Please cite only the published version.
この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/235011
DOI(出版社版): 10.1080/15732479.2018.1436572
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。