このアイテムのアクセス数: 305
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
eLife.38844.pdf | 3.11 MB | Adobe PDF | 見る/開く |
タイトル: | A prediction model of working memory across health and psychiatric disease using whole-brain functional connectivity |
著者: | Yamashita, Masahiro Yoshihara, Yujiro ![]() ![]() Hashimoto, Ryuichiro Yahata, Noriaki Ichikawa, Naho Sakai, Yuki Yamada, Takashi Matsukawa, Noriko Okada, Go Tanaka, Saori C Kasai, Kiyoto Kato, Nobumasa Okamoto, Yasumasa Seymour, Ben Takahashi, Hidehiko Kawato, Mitsuo Imamizu, Hiroshi |
著者名の別形: | 山下, 真寛 吉原, 雄二郎 橋本, 龍一郎 八幡, 憲明 市川, 奈穂 酒井, 雄希 山田, 貴志 松河, 理子 岡田, 剛 田中, 沙織 笠井, 清登 加藤, 進昌 岡本, 泰昌 髙橋, 英彦 川人, 光男 今水, 寛 |
発行日: | 10-Dec-2018 |
出版者: | eLife Sciences Publications, Ltd |
誌名: | eLife |
巻: | 7 |
論文番号: | e38844 |
抄録: | Working memory deficits are present in many neuropsychiatric diseases with diagnosis-related severity. However, it is unknown whether this common behavioral abnormality is a continuum explained by a neural mechanism shared across diseases or a set of discrete dysfunctions. Here, we performed predictive modeling to examine working memory ability (WMA) as a function of normative whole-brain connectivity across psychiatric diseases. We built a quantitative model for letter three-back task performance in healthy participants, using resting state functional magnetic resonance imaging (rs-fMRI). This normative model was applied to independent participants (N = 965) including four psychiatric diagnoses. Individual’s predicted WMA significantly correlated with a measured WMA in both healthy population and schizophrenia. Our predicted effect size estimates on WMA impairment were comparable to previous meta-analysis results. These results suggest a general association between brain connectivity and working memory ability applicable commonly to health and psychiatric diseases. |
記述: | 複数の精神疾患における記憶力を共通のモデルで予測することに成功 --疾患に共通する認知機能低下のメカニズム解明に大きく前進--. 京都大学プレスリリース. 2019-01-11. |
著作権等: | © 2018, Yamashita et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
URI: | http://hdl.handle.net/2433/236017 |
DOI(出版社版): | 10.7554/eLife.38844 |
PubMed ID: | 30526859 |
関連リンク: | https://www.kyoto-u.ac.jp/ja/research-news/2019-01-11-1 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。