Access count of this item: 15

Files in This Item:
File Description SizeFormat 
ece3.4862.pdf1.08 MBAdobe PDFView/Open
Title: Contrasting effects of habitat discontinuity on three closely related fungivorous beetle species with diverging host-use patterns and dispersal ability
Authors: Kobayashi, Takuya
Sota, Teiji
Author's alias: 小林, 卓也
曽田, 貞滋
Keywords: Ciidae
ecological specialization
landscape genetics
resistance-based models
Issue Date: Mar-2019
Publisher: John Wiley and Sons Ltd
Journal title: Ecology and Evolution
Volume: 9
Issue: 5
Start page: 2475
End page: 2486
Abstract: Understanding how landscape structure influences biodiversity patterns and ecological processes are essential in ecological research and conservation practices. Forest discontinuity is a primary driver affecting the population persistence and genetic structure of forest‐dwelling species. However, the actual impacts on populations are highly species‐specific. In this study, we tested whether dispersal capability and host specialization are associated with susceptibility to forest discontinuity using three closely related, sympatric fungivorous ciid beetle species (two host specialists, Octotemnus assimilis and O. crassus; one host generalist, O. kawanabei). Landscape genetic analyses and the estimation of effective migration surfaces (EEMS) method consistently demonstrated contrasting differences in the relationships between genetic structure and configuration of forest land cover. Octotemnus assimilis, one of the specialists with a presumably higher dispersal capability due to lower wing loading, lacked a definite spatial genetic structure in our study landscape. The remaining two species showed clear spatial genetic structure, but the results of landscape genetic analyses differed between the two species: while landscape resistance appeared to describe the spatial genetic structure of the specialist O. crassus, genetic differentiation of the generalist O. kawanabei was explained by geographic distance alone. This finding is consistent with the prediction that nonforest areas act more strongly as barriers between specialist populations. Our results suggest that differences in host range can influence the species‐specific resistance to habitat discontinuity among closely related species inhabiting the same landscape.
Rights: © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
DOI(Published Version): 10.1002/ece3.4862
Appears in Collections:Journal Articles

Show full item record

Export to RefWorks

Export Format: 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.