このアイテムのアクセス数: 670

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.scitotenv.2018.03.324.pdf1.47 MBAdobe PDF見る/開く
タイトル: Spatiotemporal land use random forest model for estimating metropolitan NO₂ exposure in Japan
著者: Araki, Shin
Shima, Masayuki
Yamamoto, Kouhei
著者名の別形: 山本, 浩平
キーワード: Air pollution
Machine learning
Distance decay effect
Prenatal exposure
Land use regression
発行日: 1-Sep-2018
出版者: Elsevier BV
誌名: Science of The Total Environment
巻: 634
開始ページ: 1269
終了ページ: 1277
抄録: Adequate spatial and temporal estimates of NO₂ concentrations are essential for proper prenatal exposure assessment. Here, we develop a spatiotemporal land use random forest (LURF) model of the monthly mean NO₂ over four years in a metropolitan area of Japan. The overall objective is to obtain accurate NO₂ estimates for use in prenatal exposure assessments. We use random forests to convey the non-linear relationship between NO₂ concentrations and predictor variables, and compare the prediction accuracy with that of a linear regression. In addition, we include the distance decay effect of emission sources on NO₂ concentrations for more efficient model construction. The prediction accuracy of the LURF model is evaluated through a leave-one-monitor-out cross validation. We obtain a high R² value of 0.79, which is better than that of the conventional land use regression model using linear regression (R² of 0.73). We also evaluate the LURF model via a temporal and overall cross validation and obtain R² values of 0.84 and 0.92, respectively. We successfully integrate temporal and spatial components into our model, which exhibits higher accuracy than spatial models constructed individually for each month. Our findings illustrate the advantage of using a LURF to model the spatiotemporal variability of NO₂ concentrations.
著作権等: © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
The full-text file will be made open to the public on 1 September 2020 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.
This is not the published version. Please cite only the published version.
この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/242227
DOI(出版社版): 10.1016/j.scitotenv.2018.03.324
PubMed ID: 29710628
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。