このアイテムのアクセス数: 318
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
BHI.2019.8834454.pdf | 932.42 kB | Adobe PDF | 見る/開く |
タイトル: | Reconstructing 3d lung shape from a single 2d image during the deaeration deformation process using model-based data augmentation |
著者: | Wu, Shuqiong Nakao, Megumi ![]() ![]() ![]() Tokuno, Junko Chen-Yoshikawa, Toyofumi Matsuda, Tetsuya |
著者名の別形: | 武, 淑瓊 中尾, 恵 徳野, 純子 陳, 豊史 松田, 哲也 |
キーワード: | CNN deaeration deformation machine learning data augmentation 3D shape reconstruction |
発行日: | May-2019 |
出版者: | IEEE |
誌名: | 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) |
論文番号: | 8834454 |
抄録: | Three-dimensional (3D) shape reconstruction is particularly important for computer assisted medical systems, especially in the case of lung surgeries, where large deaeration deformation occurs. Recently, 3D reconstruction methods based on machine learning techniques have achieved considerable success in computer vision. However, it is difficult to apply these approaches to the medical field, because the collection of a massive amount of clinic data for training is impractical. To solve this problem, this paper proposes a novel 3D shape reconstruction method that adopts both data augmentation techniques and convolutional neural networks. In the proposed method, a deformable statistical model of the 3D lungs is designed to augment various training data. As the experimental results demonstrate, even with a small database, the proposed method can realize 3D shape reconstruction for lungs during a deaeration deformation process from only one captured 2D image. Moreover, the proposed data augmentation technique can also be used in other fields where the training data are insufficient. |
記述: | 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 19-22 May 2019 |
著作権等: | © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The full-text file will be made open to the public on 1 May 2021 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/244390 |
DOI(出版社版): | 10.1109/BHI.2019.8834454 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。