Downloads: 50

Files in This Item:
File Description SizeFormat 
journal.pone.0206056.pdf1.79 MBAdobe PDFView/Open
Title: Hyaluronic acid selective anchoring to the cytoskeleton: An atomic force microscopy study
Authors: Marcotti, Stefania
Maki, Koichiro  kyouindb  KAKEN_id
Reilly, Gwendolen C.
Lacroix, Damien
Adachi, Taiji  kyouindb  KAKEN_id  orcid (unconfirmed)
Author's alias: 安達, 泰治
Issue Date: 25-Oct-2018
Publisher: Public Library of Science (PLoS)
Journal title: PLoS ONE
Volume: 13
Issue: 10
Thesis number: e0206056
Abstract: The hyaluronic acid component of the glycocalyx plays a role in cell mechanotransduction by selectively transmitting mechanical signals to the cell cytoskeleton or to the cell membrane. The aim of this study was to evaluate the mechanical link between the hyaluronic acid molecule and the cell cytoskeleton by means of atomic force microscopy single molecule force spectroscopy. Hyaluronic acid molecules on live cells were targeted with probes coated with hyaluronic acid binding protein. Two different types of events were observed when the detachment of the target molecule from the probe occurred, suggesting the presence of cytoskeleton- and membrane-anchored molecules. Membrane-anchored molecules facilitated the formation of tethers when pulled. About 15% of the tested hyaluronic acid molecules were shown to be anchored to the cytoskeleton. When multiple molecules bonded to the probe, specific detachment patterns were observed, suggesting that a cytoskeletal bond needed to be broken to improve the ability to pull tethers from the cell membrane. This likely resulted in the formation of tethering structures maintaining a cytoskeletal core similar to the ones observed for cells over-expressing HA synthases. The different observed rupture events were associated with separate mechanotransductive mechanisms in an analogous manner to that previously proposed for the endothelial glycocalyx. Single cytoskeleton anchored rupture events represent HA molecules linked to the cytoskeleton and therefore transmitting mechanical stimuli into the inner cell compartments. Single membrane tethers would conversely represent the glycocalyx molecules connected to areas of the membrane where an abundance of signalling molecules reside.
Rights: © 2018 Marcotti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
DOI(Published Version): 10.1371/journal.pone.0206056
PubMed ID: 30359403
Appears in Collections:Journal Articles

Show full item record

Export to RefWorks

Export Format: 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.