このアイテムのアクセス数: 255

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.envpol.2020.114476.pdf1.01 MBAdobe PDF見る/開く
タイトル: Estimating historical PM₂.₅ exposures for three decades (1987–2016) in Japan using measurements of associated air pollutants and land use regression
その他のタイトル: 関連大気汚染物質のモニタリング濃度値とLand Use Regressionモデルを用いた日本におけるPM₂.₅の過去30年間(1987–2016年)の曝露量推定
著者: Araki, Shin
Shima, Masayuki
Yamamoto, Kouhei
著者名の別形: 山本, 浩平
キーワード: Air pollution
Machine learning
Temporal trend
Spatial distribution
発行日: Aug-2020
出版者: Elsevier BV
誌名: Environmental Pollution
巻: 263
号: Part A
論文番号: 114476
抄録: Accurate estimation of historical PM₂.₅ exposures for epidemiological studies is challenging when extensive monitoring data are limited in duration. Here, we develop a national-scale PM₂.₅ exposure model for Japan using measurements recorded between 2014 and 2016 to estimate monthly means for 1987 through 2016. Our objective is to obtain accurate PM₂.₅ estimates for years prior to implementation of extensive PM₂.₅ monitoring, using observations from a limited period. We utilize a neural network to convey the non-linear relationship between the target pollutant and predictors, while incorporating the associated air pollutants. We obtain high R² values of 0.76 and 0.73 through spatial and temporal cross validation, respectively. We evaluate estimation accuracy using an independent data set and achieve an R² of 0.75. Moreover, monthly variations for 2000–2013 are well reproduced with correlation coefficients of greater than 0.78, obtained through a comparison with observations. We estimate monthly means at 1 × 1 km resolution from 1987 through 2016. The estimates show decreases in the area and population weighted means beginning in the 1990s. We successfully estimate monthly mean PM₂.₅ concentrations over three decades with outstanding predictive accuracy. Our findings illustrate that the presented approach achieves accurate long-term historical estimations using observations limited in duration.
著作権等: © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).
URI: http://hdl.handle.net/2433/251458
DOI(出版社版): 10.1016/j.envpol.2020.114476
PubMed ID: 33618487
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。