このアイテムのアクセス数: 90
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
d0ra02566f.pdf | 2.96 MB | Adobe PDF | 見る/開く |
タイトル: | Multi-step hydration/dehydration mechanisms of rhombohedral Y2(SO4)3: a candidate material for low-temperature thermochemical heat storage |
著者: | Shizume, Kunihiko Hatada, Naoyuki ![]() ![]() Yasui, Shoko Uda, Tetsuya ![]() ![]() |
著者名の別形: | 鎮目, 邦彦 畑田, 直行 安井, 詔子 宇田, 哲也 |
発行日: | 2020 |
出版者: | Royal Society of Chemistry (RSC) |
誌名: | RSC Advances |
巻: | 10 |
号: | 26 |
開始ページ: | 15604 |
終了ページ: | 15613 |
抄録: | To evaluate rhombohedral Y2(SO4)3 as a new potential material for low-temperature thermochemical energy storage, its thermal behavior, phase changes, and hydration/dehydration reaction mechanisms are investigated. Rhombohedral Y2(SO4)3 exhibits reversible hydration/dehydration below 130 °C with relatively small thermal hysteresis (less than 50 °C). The reactions proceed via two reaction steps in approximately 0.02 atm of water vapor pressure, i.e. “high-temperature reaction” at 80–130 °C and “low-temperature reaction” at 30–100 °C. The high-temperature reaction proceeds by water insertion into the rhombohedral Y2(SO4)3 host structure to form rhombohedral Y2(SO4)3·xH2O (x = ∼1). For the low-temperature reaction, rhombohedral Y2(SO4)3·xH2O accommodates additional water molecules (x > 1) and is eventually hydrated to Y2(SO4)3·8H2O (monoclinic) with changes in the host structure. At a water vapor pressure above 0.08 atm, intermediate Y2(SO4)3·3H2O appears. A phase stability diagram of the hydrates is constructed and the potential usage of Y2(SO4)3 for thermal energy upgrades is assessed. The high-temperature reaction may act similarly to an existing candidate, CaSO4·0.5H2O, in terms of reaction temperature and water vapor pressure. Additionally, the hydration of rhombohedral Y2(SO4)3·xH2O to Y2(SO4)3·3H2O should exhibit a larger heat storage capacity. With respect to the reaction kinetics, the initial dehydration of Y2(SO4)3·8H2O to rhombohedral Y2(SO4)3 introduces a microstructure with pores on the micron order, which might enhance the reaction rate. |
著作権等: | © The Royal Society of Chemistry 2020. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. |
URI: | http://hdl.handle.net/2433/252352 |
DOI(出版社版): | 10.1039/d0ra02566f |
PubMed ID: | 35495422 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。