ダウンロード数: 164

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.actamat.2020.07.055.pdf3.42 MBAdobe PDF見る/開く
タイトル: Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer
著者: Zheng, Ruixiao
Du, Jun-Ping
Gao, Si  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-6430-4172 (unconfirmed)
Somekawa, Hidetoshi
Ogata, Shigenobu
Tsuji, Nobuhiro  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2132-1327 (unconfirmed)
著者名の別形: 染川, 英俊
尾方, 成信
辻, 伸泰
キーワード: Magnesium
Strength and ductility
Deformation mode
Hall-petch relationship
Grain size
発行日: Oct-2020
出版者: Elsevier BV
誌名: Acta Materialia
巻: 198
開始ページ: 35
終了ページ: 46
抄録: Magnesium (Mg) and its alloys usually show relatively low strength and poor ductility at room temperature due to their anisotropic hexagonal close-packed (HCP) crystal structure that provides a limited number of independent slip systems. Here we report that unique combinations of strength and ductility can be realized in bulk polycrystalline pure Mg by tuning the predominant deformation mode. We succeeded in obtaining the fully recrystallized specimens of pure Mg having a wide range of average grain sizes, of which minimum grain size was 650 nm, and clarified mechanical properties and deformation mechanisms at room temperature systematically as a function of the grain size. Deformation twinning and basal slip governed plastic deformation in the conventional coarse-grained region, but twinning was suppressed when the grain size was refined down to several micro-meters. Eventually, grain boundary mediated plasticity, i.e., grain boundary sliding became dominant in the ultrafine-grained (UFG) specimen having a mean grain size smaller than 1 μm. The transition of the deformation modes led to a significant increase of tensile elongation and breakdown of Hall-Petch relationship. It was quantitatively confirmed by detailed microstructural observation and theoretical calculation that the change in strength and ductility arose from the distinct grain size dependence of the critical shear stress for activating different deformation modes.
著作権等: © 2020 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
URI: http://hdl.handle.net/2433/255222
DOI(出版社版): 10.1016/j.actamat.2020.07.055
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。