このアイテムのアクセス数: 164

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
978-3-030-11051-2_26.pdf181.16 kBAdobe PDF見る/開く
タイトル: An Estimation Method of Intellectual Concentration State by Machine Learning of Physiological Indices
著者: Kimura, Kaku
Kunimasa, Shutaro
Kusakabe, You
Ishii, Hirotake  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-5638-4862 (unconfirmed)
Shimoda, Hiroshi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-5231-4955 (unconfirmed)
著者名の別形: 木村, 覚
國政, 秀太郎
日下部, 曜
石井, 裕剛
下田, 宏
キーワード: Intellectual concentration state
Machine learning
Physiological indices
発行日: 2019
出版者: Springer Nature
誌名: Advances in Intelligent Systems and Computing
開始ページ: 168
終了ページ: 174
抄録: Although recent information society has improved the value of intellectual work productivity, its objective and quantitative evaluation has not been established. It is suggested that intellectual productivity can be indirectly evaluated by estimating intellectual concentration states when giving cognitive load. In this study, therefore, the authors have focused on physiological indices such as pupil diameter and heart rate which are supposed to be closely related to cognitive load in office work, and an estimation method of intellectual concentration states from the measured indices has been proposed. Multiple patterns of classification learning methods such as Decision Tree, Linear Discrimination, SVM, and KNN were employed as the estimation method. Based on the estimation method, an evaluation experiment was conducted where 31 male university students participated and the measured psychological indices were given to the classification learning estimators.
記述: Proceedings of the 2nd International Conference on Intelligent Human Systems Integration (IHSI 2019): Integrating People and Intelligent Systems, February 7-10, 2019, San Diego, California, USA.
Part of the book series: Advances in Intelligent Systems and Computing (AISC, volume 903)
著作権等: This is a post-peer-review, pre-copyedit version of an article published in Advances in Intelligent Systems and Computing. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-11051-2_26.
この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
This is not the published version. Please cite only the published version.
URI: http://hdl.handle.net/2433/259834
DOI(出版社版): 10.1007/978-3-030-11051-2_26
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。