このアイテムのアクセス数: 141
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B79-04.pdf | 143.62 kB | Adobe PDF | 見る/開く |
タイトル: | Crossover phenomena in the critical behavior for long-range models with power-law couplings (Stochastic Analysis on Large Scale Interacting Systems) |
著者: | Sakai, Akira |
キーワード: | 60K35 82B20 82B27 82B41 82B43 Random walk self-avoiding walk percolation Ising model power-law coupling critical two-point function critical dimension crossover phenomena lace expansion |
発行日: | Apr-2020 |
出版者: | Research Institute for Mathematical Sciences, Kyoto University |
誌名: | 数理解析研究所講究録別冊 |
巻: | B79 |
開始ページ: | 51 |
終了ページ: | 62 |
抄録: | This is a short review of the two papers [9, 10] on the x-space asymptotics of the critical two-point function Gpc (x) for the long-range models of self-avoiding walk, percolation and the Ising model on Zd, defined by the translation-invariant power-law step-distribution/coupling D(x)|x|-d-αor some α > 0. Let S1(x) be the random-walk Green function generated by D. We have shown that S1(x) changes its asymptotic behavior from Newton (α > 2) to Riesz (α < 2), with log correction at α = 2; Gpc(x) - A/pc S1(x) as|x| → ∞ in dimensions higher than (or equal to, if α = 2) the upper critical dimension dc (with sufficiently large spread-out parameter L). The model-dependent A and dc exhibit crossover at α = 2. The keys to the proof are (i) detailed analysis on the underlying random walk to derive sharp asymptotics of S1, (ii) bounds on convolutions of power functions (with log corrections, if α = 2) to optimally control the lace-expansion coefficients π(n)p, and (iii) probabilistic interpretation (valid only when α ≤ 2) of the convolution of D and a function Πp of the alternating series Σ∞n=0(-1)nπ(n)p. We outline the proof, emphasizing the above key elements for percolation in particular. |
記述: | "Stochastic Analysis on Large Scale Interacting Systems". November 5-8, 2018. edited by Ryoki Fukushima, Tadahisa Funaki, Yukio Nagahata, Hirofumi Osada and Kenkichi Tsunoda. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. |
著作権等: | © 2020 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. |
URI: | http://hdl.handle.net/2433/260644 |
出現コレクション: | B79 Stochastic Analysis on Large Scale Interacting Systems |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。