このアイテムのアクセス数: 242

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
12.2581388.pdf3.53 MBAdobe PDF見る/開く
タイトル: Kernel-based modeling of pneumothorax deformation using intraoperative cone-beam CT images
著者: Nakao, Megumi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-5508-4366 (unconfirmed)
Maekawa, Hinako
Mineura, Katsutaka
Chen-Yoshikawa, Toyofumi F.
Matsuda, Tetsuya
著者名の別形: 中尾, 恵
前川, 日南子
峯浦, 一貴
芳川, 豊史
松田, 哲也
発行日: 15-Feb-2021
出版者: SPIE
誌名: Proceedings; Medical Imaging 2021: Image-Guided Procedures, Robotic Interventions, and Modeling
巻: 11598
論文番号: 115980P
抄録: In this study, we introduce statistical modeling methods for pneumothorax deformation using paired cone-beam computed tomography (CT) images. We designed a deformable mesh registration framework for shape changes involving non-linear deformation and rotation of the lungs. The registered meshes with local correspondences are available for both surgical guidance in thoracoscopic surgery and building statistical deformation models with inter-patient variations. In addition, a kernel-based deformation learning framework is proposed to reconstruct intraoperative dfl ated states of the lung from the preoperative CT models. This paper reports the findings of pneumothorax deformation and evaluation results of the kernel-based deformation framework.
記述: Event: SPIE Medical Imaging, 2021, Online Only
著作権等: © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
URI: http://hdl.handle.net/2433/264686
DOI(出版社版): 10.1117/12.2581388
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。