ダウンロード数: 163

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
acs.chemmater.0c03544.pdf924.05 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorZheng, Yayunen
dc.contributor.authorTawa, Shinyaen
dc.contributor.authorHwang, Jinkwangen
dc.contributor.authorOrikasa, Yukien
dc.contributor.authorMatsumoto, Kazuhikoen
dc.contributor.authorHagiwara, Rikaen
dc.contributor.alternative鄭, 亞雲ja
dc.contributor.alternative田和, 慎也ja
dc.contributor.alternative黄, 珍光ja
dc.contributor.alternative松本, 一彦ja
dc.contributor.alternative萩原, 理加ja
dc.date.accessioned2021-09-30T08:18:30Z-
dc.date.available2021-09-30T08:18:30Z-
dc.date.issued2021-02-
dc.identifier.urihttp://hdl.handle.net/2433/265329-
dc.description.abstractExtensive studies on trirutile Li₀.₅FeF₃ phase have been commissioned in the context of the Li–Fe–F system for Li-ion batteries. However, progress in electrochemical and structural studies has been greatly encumbered by the low electrochemical reactivity of this material. In order to advance this class of materials, a comprehensive study into the mechanisms of this phase is necessary. Therefore, herein, we report for the first time overall reaction mechanisms of ordered trirutile Li₀.₅FeF₃ at elevated temperatures of 90 °C with the aid of a thermally stable ionic liquid electrolyte. Ordered trirutile Li₀.₅FeF₃ is prepared by high-energy ball milling combined with heat treatment followed by electrochemical tests, X-ray diffraction, and X-ray absorption spectroscopic analyses. Our results reveal that a reversible topotactic Li⁺ extraction/insertion from/into the trirutile structure occurs in a two-phase reaction with a minor volume change (1.09% between Li₀.₅FeF₃ and Li₀.₁₁FeF₃) in the voltage range of 3.2–4.3 V. The extension of the lower cutoff voltage to 2.5 V results in a conversion reaction to LiF and rutile FeF₂ during discharging. The subsequent charge triggers the formation of the disordered trirutile structure at 4.3 V without showing the reconversion from LiF and rutile FeF₂ to ordered trirutile Li₀.₅FeF₃ or FeF₃.en
dc.language.isoeng-
dc.publisherAmerican Chemical Society (ACS)en
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.chemmater.0c03544.en
dc.rightsThe full-text file will be made open to the public on 9 February 2022 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectElectrodesen
dc.subjectChemical structureen
dc.subjectPhysical and chemical processesen
dc.subjectElectrolytesen
dc.subjectMaterialsen
dc.titlePhase Evolution of Trirutile Li₀.₅FeF₃ for Lithium-Ion Batteriesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleChemistry of Materialsen
dc.identifier.volume33-
dc.identifier.issue3-
dc.identifier.spage868-
dc.identifier.epage880-
dc.relation.doi10.1021/acs.chemmater.0c03544-
dc.textversionauthor-
dcterms.accessRightsopen access-
datacite.date.available2022-02-09-
datacite.awardNumber19H02811-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H02811/-
dc.identifier.pissn0897-4756-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleイオン液体を電解質として用いる高温作動型リチウム二次電池ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。