このアイテムのアクセス数: 208

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
EMBC44109.2020.9176601.pdf1.03 MBAdobe PDF見る/開く
タイトル: Enumerated sparse extraction of important surgical planning features for mandibular reconstruction
著者: Nagai, Kazuki
Nakao, Megumi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-5508-4366 (unconfirmed)
Ueda, Nobuhiro
Imai, Yuichiro
Kirita, Tadaaki
Matsuda, Tetsuya  KAKEN_id  orcid https://orcid.org/0000-0002-2339-1521 (unconfirmed)
著者名の別形: 永井, 一希
中尾, 恵
松田, 哲也
キーワード: Feature extraction
Surgery
Planning
Image reconstruction
Biomedical imaging
Estimation
Linear programming
発行日: 2020
出版者: Institute of Electrical and Electronics Engineers Inc.
誌名: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
開始ページ: 5519
終了ページ: 5522
論文番号: 9176601
抄録: Because implicit medical knowledge and experience are used to perform medical treatment, such decisions must be clarified when systematizing surgical procedures. We propose an algorithm that extracts low-dimensional features that are important for determining the number of fibular segments in mandibular reconstruction using the enumeration of Lasso solutions (eLasso). To perform the multi-class classification, we extend the eLasso using an importance evaluation criterion that quantifies the contribution of the extracted features. Experiment results show that the extracted 7-dimensional feature set has the same estimation performance as the set using all 49-dimensional features.
記述: [2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC 2020); Montreal, Quebec, Canada, 20-24 July 2020]
著作権等: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/265385
DOI(出版社版): 10.1109/EMBC44109.2020.9176601
PubMed ID: 33019229
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。