Downloads: 175
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
B87-06.pdf | 304.74 kB | Adobe PDF | View/Open |
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 前田, 一貴 | ja |
dc.contributor.alternative | MAEDA, Kazuki | en |
dc.contributor.transcription | マエダ, カズキ | ja-Kana |
dc.date.accessioned | 2021-11-02T00:33:06Z | - |
dc.date.available | 2021-11-02T00:33:06Z | - |
dc.date.issued | 2021-08 | - |
dc.identifier.uri | http://hdl.handle.net/2433/265829 | - |
dc.description | Mathematical structures of integrable systems, its deepening and expansion. September 9-11, 2019. edited by Takao Suzuki. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. | en |
dc.description.abstract | We discuss the theory of finite orthogonal polynomials based on elementary linear algebra and its connection to the nonautonomous discrete Toda lattice with nonperiodic finite lattice boundary condition. By using the spectral transformation technique for finite orthogonal polynomials, one can give a solution to the initial value problem of the nonautonomous discrete Toda lattice. However, this construction of the solution cannot be ultradiscretized because of so-called “negative problem". In this paper, we focus on the rigged configuration technique to solve the initial value problem of the box-ball system and consider a connection between the rigged configuration and orthogonal polynomials. | en |
dc.language.iso | jpn | - |
dc.publisher | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.publisher.alternative | 京都大学数理解析研究所 | ja |
dc.rights | © 2021 by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. All rights reserved. | en |
dc.subject | 37K10 | en |
dc.subject | 37B15 | en |
dc.subject | 42C05 | en |
dc.subject | Box-ball systems | en |
dc.subject | nonautonomous ultradiscrete Toda lattice | en |
dc.subject | biorthogonal polynomials | en |
dc.subject.ndc | 410 | - |
dc.title | 箱玉系と非自励離散戸田格子 (可積分系数理の深化と展開) | ja |
dc.title.alternative | Box-ball system and the nonautonomous discrete Toda lattice (Mathematical structures of integrable systems, its deepening and expansion) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AA12196120 | - |
dc.identifier.jtitle | 数理解析研究所講究録別冊 | ja |
dc.identifier.volume | B87 | - |
dc.identifier.spage | 79 | - |
dc.identifier.epage | 98 | - |
dc.textversion | publisher | - |
dc.sortkey | 06 | - |
dc.address | 福知山公立大学情報学部 | ja |
dc.address.alternative | Faculty of and Informatics, The University of Fukuchiyama | en |
dcterms.accessRights | open access | - |
datacite.awardNumber | 17H02858 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H02858/ | - |
dc.identifier.pissn | 1881-6193 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku Bessatsu | en |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 可積分アルゴリズム:正値性をもつ高精度計算基盤 | ja |
Appears in Collections: | B87 Mathematical structures of integrable systems, its deepening and expansion |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.