Downloads: 175

Files in This Item:
File Description SizeFormat 
B87-06.pdf304.74 kBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.author前田, 一貴ja
dc.contributor.alternativeMAEDA, Kazukien
dc.contributor.transcriptionマエダ, カズキja-Kana
dc.date.accessioned2021-11-02T00:33:06Z-
dc.date.available2021-11-02T00:33:06Z-
dc.date.issued2021-08-
dc.identifier.urihttp://hdl.handle.net/2433/265829-
dc.descriptionMathematical structures of integrable systems, its deepening and expansion. September 9-11, 2019. edited by Takao Suzuki. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.en
dc.description.abstractWe discuss the theory of finite orthogonal polynomials based on elementary linear algebra and its connection to the nonautonomous discrete Toda lattice with nonperiodic finite lattice boundary condition. By using the spectral transformation technique for finite orthogonal polynomials, one can give a solution to the initial value problem of the nonautonomous discrete Toda lattice. However, this construction of the solution cannot be ultradiscretized because of so-called “negative problem". In this paper, we focus on the rigged configuration technique to solve the initial value problem of the box-ball system and consider a connection between the rigged configuration and orthogonal polynomials.en
dc.language.isojpn-
dc.publisherResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.publisher.alternative京都大学数理解析研究所ja
dc.rights© 2021 by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. All rights reserved.en
dc.subject37K10en
dc.subject37B15en
dc.subject42C05en
dc.subjectBox-ball systemsen
dc.subjectnonautonomous ultradiscrete Toda latticeen
dc.subjectbiorthogonal polynomialsen
dc.subject.ndc410-
dc.title箱玉系と非自励離散戸田格子 (可積分系数理の深化と展開)ja
dc.title.alternativeBox-ball system and the nonautonomous discrete Toda lattice (Mathematical structures of integrable systems, its deepening and expansion)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAA12196120-
dc.identifier.jtitle数理解析研究所講究録別冊ja
dc.identifier.volumeB87-
dc.identifier.spage79-
dc.identifier.epage98-
dc.textversionpublisher-
dc.sortkey06-
dc.address福知山公立大学情報学部ja
dc.address.alternativeFaculty of and Informatics, The University of Fukuchiyamaen
dcterms.accessRightsopen access-
datacite.awardNumber17H02858-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H02858/-
dc.identifier.pissn1881-6193-
dc.identifier.jtitle-alternativeRIMS Kokyuroku Bessatsuen
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle可積分アルゴリズム:正値性をもつ高精度計算基盤ja
Appears in Collections:B87 Mathematical structures of integrable systems, its deepening and expansion

Show simple item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.