Downloads: 496
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
djohk00772.pdf | Dissertation_全文 | 3.81 MB | Adobe PDF | View/Open |
yjohk00772.pdf | Abstract_要旨 | 183.83 kB | Adobe PDF | View/Open |
Title: | Goal-oriented Modeling for Data-driven Decision Making |
Other Titles: | データ駆動型意思決定のための目的指向モデリング |
Authors: | Tanimoto, Akira |
Author's alias: | 谷本, 啓 |
Keywords: | Artificial intelligence Decision-making support system Machine learning Causal inference Reinforcement learning Sample-efficiency |
Issue Date: | 24-Sep-2021 |
Publisher: | Kyoto University |
Conferring University: | 京都大学 |
Degree Level: | 新制・課程博士 |
Degree Discipline: | 博士(情報学) |
Degree Report no.: | 甲第23542号 |
Degree no.: | 情博第772号 |
Conferral date: | 2021-09-24 |
Degree Call no.: | 新制||情||132(附属図書館) |
Degree Affiliation: | 京都大学大学院情報学研究科知能情報学専攻 |
Examination Committee members: | (主査)教授 鹿島 久嗣, 教授 山本 章博, 教授 下平 英寿 |
Provisions of the Ruling of Degree: | 学位規則第4条第1項該当 |
Rights: | 許諾条件により全文は2022-08-10に公開 This thesis includes the following contents as parts. ・A. Tanimoto. Combinatorial Q-learning for condition-based infrastructure maintenance. IEEE Access, 2021. doi: 10.1109/ACCESS.2021.3059244. In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Kyoto University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink. ・A. Tanimoto, S. Yamada, T. Takenouchi, M. Sugiyama, and H. Kashima. Improving imbalanced classification using near-miss instances. Expert Systems with Applications, 201:117130, 2022. doi: 10.1016/j.eswa.2022.117130. ・A. Tanimoto, T. Sakai, T. Takenouchi, and H. Kashima. Regret minimiza- tion for causal inference on large treatment space. In International Con- ference on Artificial Intelligence and Statistics (AISTATS), pages 946–954, 2021. ・A. Tanimoto, T. Sakai, T. Takenouchi, and H. Kashima. Causal combinatorial factorization machines for set-wise recommendation. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2021. doi: 10.1007/978-3-030-75765-6_40. |
DOI: | 10.14989/doctor.k23542 |
URI: | http://hdl.handle.net/2433/266070 |
Appears in Collections: | 140 Doctoral Dissertation (Informatics) |

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.