このアイテムのアクセス数: 143

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
PhysRevMaterials.5.113803.pdf868.94 kBAdobe PDF見る/開く
タイトル: Finding well-optimized special quasirandom structures with decision diagram
著者: Shinohara, Kohei
Seko, Atsuto  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2473-3837 (unconfirmed)
Horiyama, Takashi
Tanaka, Isao  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-4616-118X (unconfirmed)
著者名の別形: 篠原, 航平
世古, 敦人
田中, 功
キーワード: Crystal structure
Machine learning
Optimization problems
Alloys
Condensed Matter, Materials & Applied Physics
発行日: Nov-2021
出版者: American Physical Society (APS)
誌名: Physical Review Materials
巻: 5
号: 11
論文番号: 113803
抄録: The advanced data structure of the zero-suppressed binary decision diagram (ZDD) enables us to efficiently enumerate nonequivalent substitutional structures. Not only can the ZDD store a vast number of structures in a compressed manner, but also a set of structures satisfying given constraints can be extracted from the ZDD efficiently. Here, we present a ZDD-based efficient algorithm for exhaustively searching for special quasirandom structures (SQSs) that mimic the perfectly random substitutional structure. We demonstrate that the current approach can extract only a tiny number of SQSs from a ZDD composed of many substitutional structures (>10¹²). As a result, we find SQSs that are optimized better than those proposed in the literature. A series of SQSs should be helpful for estimating the properties of substitutional solid solutions. Furthermore, the present ZDD-based algorithm should be useful for applying the ZDD to the other structure enumeration problems.
著作権等: © 2021 American Physical Society
URI: http://hdl.handle.net/2433/269424
DOI(出版社版): 10.1103/PhysRevMaterials.5.113803
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。