このアイテムのアクセス数: 143
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
PhysRevMaterials.5.113803.pdf | 868.94 kB | Adobe PDF | 見る/開く |
タイトル: | Finding well-optimized special quasirandom structures with decision diagram |
著者: | Shinohara, Kohei Seko, Atsuto ![]() ![]() ![]() Horiyama, Takashi Tanaka, Isao ![]() ![]() ![]() |
著者名の別形: | 篠原, 航平 世古, 敦人 田中, 功 |
キーワード: | Crystal structure Machine learning Optimization problems Alloys Condensed Matter, Materials & Applied Physics |
発行日: | Nov-2021 |
出版者: | American Physical Society (APS) |
誌名: | Physical Review Materials |
巻: | 5 |
号: | 11 |
論文番号: | 113803 |
抄録: | The advanced data structure of the zero-suppressed binary decision diagram (ZDD) enables us to efficiently enumerate nonequivalent substitutional structures. Not only can the ZDD store a vast number of structures in a compressed manner, but also a set of structures satisfying given constraints can be extracted from the ZDD efficiently. Here, we present a ZDD-based efficient algorithm for exhaustively searching for special quasirandom structures (SQSs) that mimic the perfectly random substitutional structure. We demonstrate that the current approach can extract only a tiny number of SQSs from a ZDD composed of many substitutional structures (>10¹²). As a result, we find SQSs that are optimized better than those proposed in the literature. A series of SQSs should be helpful for estimating the properties of substitutional solid solutions. Furthermore, the present ZDD-based algorithm should be useful for applying the ZDD to the other structure enumeration problems. |
著作権等: | © 2021 American Physical Society |
URI: | http://hdl.handle.net/2433/269424 |
DOI(出版社版): | 10.1103/PhysRevMaterials.5.113803 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。