このアイテムのアクセス数: 113

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s00028-022-00778-7.pdf1.05 MBAdobe PDF見る/開く
タイトル: Maximal $$L^1$$-regularity for parabolic initial-boundary value problems with inhomogeneous data
著者: Ogawa, Takayoshi
Shimizu, Senjo  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-1220-0627 (unconfirmed)
著者名の別形: 清水, 扇丈
キーワード: Parabolic equations with variable coefficients
Maximal $$L^1$$-regularity
End-point estimate
Initial-boundary value problems
The Dirichlet problem
The Neumann problem
35K20
42B25
発行日: Jun-2022
出版者: Springer Nature
誌名: Journal of Evolution Equations
巻: 22
号: 2
論文番号: 30
抄録: End-point maximal $$L^1$$-regularity for parabolic initial-boundary value problems is considered. For the inhomogeneous Dirichlet and Neumann data, maximal $$L^1$$-regularity for initial-boundary value problems is established in time end-point case upon the homogeneous Besov space $${dot{B } }_{p, 1}^s({mathbb {R } }^n_+)$$ with $$1< p< infty $$ and $$-1+1/p<sle 0$$ as well as optimal trace estimates. The main estimates obtained here are sharp in the sense of trace estimates and it is not available by known theory on the class of UMD Banach spaces. We utilize a method of harmonic analysis, in particular, the almost orthogonal properties between the boundary potentials of the Dirichlet and the Neumann boundary data and the Littlewood-Paley dyadic decomposition of unity in the Besov and the Lizorkin–Triebel spaces.
著作権等: © 2022 The Author(s)
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
URI: http://hdl.handle.net/2433/274291
DOI(出版社版): 10.1007/s00028-022-00778-7
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons