このアイテムのアクセス数: 113
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s00028-022-00778-7.pdf | 1.05 MB | Adobe PDF | 見る/開く |
タイトル: | Maximal $$L^1$$-regularity for parabolic initial-boundary value problems with inhomogeneous data |
著者: | Ogawa, Takayoshi Shimizu, Senjo ![]() ![]() ![]() |
著者名の別形: | 清水, 扇丈 |
キーワード: | Parabolic equations with variable coefficients Maximal $$L^1$$-regularity End-point estimate Initial-boundary value problems The Dirichlet problem The Neumann problem 35K20 42B25 |
発行日: | Jun-2022 |
出版者: | Springer Nature |
誌名: | Journal of Evolution Equations |
巻: | 22 |
号: | 2 |
論文番号: | 30 |
抄録: | End-point maximal $$L^1$$-regularity for parabolic initial-boundary value problems is considered. For the inhomogeneous Dirichlet and Neumann data, maximal $$L^1$$-regularity for initial-boundary value problems is established in time end-point case upon the homogeneous Besov space $${dot{B } }_{p, 1}^s({mathbb {R } }^n_+)$$ with $$1< p< infty $$ and $$-1+1/p<sle 0$$ as well as optimal trace estimates. The main estimates obtained here are sharp in the sense of trace estimates and it is not available by known theory on the class of UMD Banach spaces. We utilize a method of harmonic analysis, in particular, the almost orthogonal properties between the boundary potentials of the Dirichlet and the Neumann boundary data and the Littlewood-Paley dyadic decomposition of unity in the Besov and the Lizorkin–Triebel spaces. |
著作権等: | © 2022 The Author(s) This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. |
URI: | http://hdl.handle.net/2433/274291 |
DOI(出版社版): | 10.1007/s00028-022-00778-7 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス