ダウンロード数: 48

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s40645-020-00386-4.pdf5.23 MBAdobe PDF見る/開く
タイトル: Impact of climate change on flood inundation in a tropical river basin in Indonesia
著者: Yamamoto, Kodai
Sayama, Takahiro  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-0558-6878 (unconfirmed)
Apip
著者名の別形: 山本, 浩大
佐山, 敬洋
キーワード: Climate change
Flooding
NHRCM
Peatland
Quantile mapping
RRI model
Sumatra Island
The Batanghari River basin
Variance scaling
発行日: 2021
出版者: Springer Nature
誌名: Progress in Earth and Planetary Science
巻: 8
論文番号: 5
抄録: Climate change will have a significant impact on the water cycle and will lead to severe environmental problems and disasters in humid tropical river basins. Examples include river basins in Sumatra Island, Indonesia, where the coastal lowland areas are mostly composed of peatland that is a wetland environment initially sustained by flooding from rivers. Climate change may alter the frequency and magnitude of flood inundation in these lowland areas, disturbing the peatland environment and its carbon dynamics and damaging agricultural plantations. Consequently, projecting the extent of inundation due to future flooding events is considered important for river basin management. Using dynamically downscaled climate data obtained by the Non-Hydrostatic Regional Climate Model (NHRCM), the Rainfall-Runoff-Inundation (RRI) model was applied to the Batanghari River Basin (42, 960 km²) in Sumatra Island, Indonesia, to project the extent of flood inundation in the latter part of the twenty-first century. In order to obtain reasonable estimates of the extent of future flood inundation, this study compared two bias correction methods: a Quantile Mapping (QM) method and a combination of QM and Variance Scaling (VS) methods. The results showed that the bias correction obtained by the QM method improved the simulated flow duration curve (FDC) obtained from the RRI model, which facilitated comparison with the simulated FDC using reference rainfall data. However, the high spatial variability observed in daily and 15-day rainfall data remained as the spatial variation bias, and this could not be resolved by simple QM bias correction alone. Consequently, the simulated extreme variables, such as annual maximum flood inundation volume, were overestimated compared to the reference data. By introducing QM-VS bias correction, the cumulative density functions of annual maximum discharge and inundation volumes were improved. The findings also showed that flooding will increase in this region; for example, the flood inundation volume corresponding to a 20-year return period will increase by 3.3 times. River basin management measures, such as land use regulations for plantations and wetland conservation, should therefore consider increases in flood depth and area, the extents of which under a future climate scenario are presented in this study.
著作権等: © The Author(s). 2021
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
URI: http://hdl.handle.net/2433/274489
DOI(出版社版): 10.1186/s40645-020-00386-4
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons