このアイテムのアクセス数: 720

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
bib_bbz140.pdf1.44 MBAdobe PDF見る/開く
タイトル: A survey on adverse drug reaction studies: data, tasks and machine learning methods
著者: Nguyen, Duc Anh
Nguyen, Canh Hao
Mamitsuka, Hiroshi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-6607-5617 (unconfirmed)
著者名の別形: 馬見塚, 拓
キーワード: adverse drug reaction
ADR prediction
ADR mechanism
machine learning methods
発行日: Jan-2021
出版者: Oxford University Press (OUP)
誌名: Briefings in Bioinformatics
巻: 22
号: 1
開始ページ: 164
終了ページ: 177
抄録: MOTIVATION: Adverse drug reaction (ADR) or drug side effect studies play a crucial role in drug discovery. Recently, with the rapid increase of both clinical and non-clinical data, machine learning methods have emerged as prominent tools to support analyzing and predicting ADRs. Nonetheless, there are still remaining challenges in ADR studies. RESULTS: In this paper, we summarized ADR data sources and review ADR studies in three tasks: drug-ADR benchmark data creation, drug-ADR prediction and ADR mechanism analysis. We focused on machine learning methods used in each task and then compare performances of the methods on the drug-ADR prediction task. Finally, we discussed open problems for further ADR studies. AVAILABILITY: Data and code are available at https://github.com/anhnda/ADRPModels.
著作権等: This is a pre-copyedited, author-produced PDF of an article accepted for publication in 'Briefings in Bioinformatics' following peer review. The version of record [Briefings in Bioinformatics, Volume 22, Issue 1, January 2021, Pages 164–177] is available online at: https://doi.org/10.1093/bib/bbz140
The full-text file will be made open to the public on 14 December 2020 in accordance with publisher's 'Terms and Conditions for Self-Archiving'
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/275585
DOI(出版社版): 10.1093/bib/bbz140
PubMed ID: 31838499
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。