このアイテムのアクセス数: 60
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s10955-022-02959-7.pdf | 1.64 MB | Adobe PDF | 見る/開く |
タイトル: | Singular Behavior of the Macroscopic Quantity Near the Boundary for a Lorentz-Gas Model with the Infinite-Range Potential |
著者: | Takata, Shigeru ![]() ![]() ![]() Hattori, Masanari ![]() ![]() ![]() |
著者名の別形: | 髙田, 滋 初鳥, 匡成 |
キーワード: | Kinetic theory of gases Boltzmann equation Infinite-range potential Grazing collision Lorentz gas Kac model Singularity |
発行日: | Sep-2022 |
出版者: | Springer Nature |
誌名: | Journal of Statistical Physics |
巻: | 188 |
号: | 3 |
論文番号: | 32 |
抄録: | Possibility of the diverging gradient of the macroscopic quantity near the boundary is investigated by a mono-speed Lorentz-gas model, with a special attention to the regularizing effect of the grazing collision for the infinite-range potential on the velocity distribution function (VDF) and its influence on the macroscopic quantity. By careful numerical analyses of the steady one-dimensional boundary-value problem, it is confirmed that the grazing collision suppresses the occurrence of a jump discontinuity of the VDF on the boundary. However, as the price for that regularization, the collision integral becomes no longer finite in the direction of the molecular velocity parallel to the boundary. Consequently, the gradient of the macroscopic quantity diverges, even stronger than the case of the finite-range potential. A conjecture about the diverging rate in approaching the boundary is made as well for a wide range of the infinite-range potentials, accompanied by the numerical evidence. |
著作権等: | This is a post-peer-review, pre-copyedit version of an article published in ’Journal of Statistical Physics'. The final authenticated version is available online at: https://doi.org/10.1007/s10955-022-02959-7. The full-text file will be made open to the public on 13 July 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/275719 |
DOI(出版社版): | 10.1007/s10955-022-02959-7 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。