このアイテムのアクセス数: 51

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
fms.2021.24.pdf1.07 MBAdobe PDF見る/開く
タイトル: CM liftings of K3 surfaces over finite fields and their applications to the Tate conjecture
著者: Ito, Kazuhiro
Ito, Tetsushi
Koshikawa, Teruhisa  KAKEN_id
著者名の別形: 伊藤, 和広
伊藤, 哲史
越川, 皓永
キーワード: 11G18: Arithmetic aspects of modular and Shimura varieties
11G15: Complex multiplication and moduli of abelian varieties
14G35: Modular and Shimura varieties
14J28: $K3$ surfaces and Enriques surfaces
発行日: 2021
出版者: Cambridge University Press (CUP)
誌名: Forum of Mathematics, Sigma
巻: 9
論文番号: e29
抄録: We give applications of integral canonical models of orthogonal Shimura varieties and the Kuga-Satake morphism to the arithmetic of K3 surfaces over finite fields. We prove that every K3 surface of finite height over a finite field admits a characteristic 0 lifting whose generic fibre is a K3 surface with complex multiplication. Combined with the results of Mukai and Buskin, we prove the Tate conjecture for the square of a K3 surface over a finite field. To obtain these results, we construct an analogue of Kisin’s algebraic group for a K3 surface of finite height and construct characteristic 0 liftings of the K3 surface preserving the action of tori in the algebraic group. We obtain these results for K3 surfaces over finite fields of any characteristics, including those of characteristic 2 or 3 .
著作権等: © The Author(s), 2021. Published by Cambridge University Press
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
URI: http://hdl.handle.net/2433/276398
DOI(出版社版): 10.1017/fms.2021.24
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons