このアイテムのアクセス数: 51
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
fms.2021.24.pdf | 1.07 MB | Adobe PDF | 見る/開く |
タイトル: | CM liftings of K3 surfaces over finite fields and their applications to the Tate conjecture |
著者: | Ito, Kazuhiro Ito, Tetsushi Koshikawa, Teruhisa ![]() |
著者名の別形: | 伊藤, 和広 伊藤, 哲史 越川, 皓永 |
キーワード: | 11G18: Arithmetic aspects of modular and Shimura varieties 11G15: Complex multiplication and moduli of abelian varieties 14G35: Modular and Shimura varieties 14J28: $K3$ surfaces and Enriques surfaces |
発行日: | 2021 |
出版者: | Cambridge University Press (CUP) |
誌名: | Forum of Mathematics, Sigma |
巻: | 9 |
論文番号: | e29 |
抄録: | We give applications of integral canonical models of orthogonal Shimura varieties and the Kuga-Satake morphism to the arithmetic of K3 surfaces over finite fields. We prove that every K3 surface of finite height over a finite field admits a characteristic 0 lifting whose generic fibre is a K3 surface with complex multiplication. Combined with the results of Mukai and Buskin, we prove the Tate conjecture for the square of a K3 surface over a finite field. To obtain these results, we construct an analogue of Kisin’s algebraic group for a K3 surface of finite height and construct characteristic 0 liftings of the K3 surface preserving the action of tori in the algebraic group. We obtain these results for K3 surfaces over finite fields of any characteristics, including those of characteristic 2 or 3 . |
著作権等: | © The Author(s), 2021. Published by Cambridge University Press This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
URI: | http://hdl.handle.net/2433/276398 |
DOI(出版社版): | 10.1017/fms.2021.24 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス