このアイテムのアクセス数: 226

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
3451883.pdf4.13 MBAdobe PDF見る/開く
タイトル: Data-Driven Imitation Learning for a Shopkeeper Robot with Periodically Changing Product Information
著者: Doering, Malcolm
Brščić, Dražen  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-8477-6460 (unconfirmed)
Kanda, Takayuki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-9546-5825 (unconfirmed)
著者名の別形: 神田, 崇行
キーワード: database question answering
knowledge base question answering
Human-robot interaction
imitation learning
service robot
retail robot
social robot
発行日: Dec-2021
出版者: Association for Computing Machinery (ACM)
誌名: ACM Transactions on Human-Robot Interaction
巻: 10
号: 4
論文番号: 31
抄録: Data-driven imitation learning enables service robots to learn social interaction behaviors, but these systems cannot adapt after training to changes in the environment, such as changing products in a store. To solve this, a novel learning system that uses neural attention and approximate string matching to copy information from a product information database to its output is proposed. A camera shop interaction dataset was simulated for training/testing. The proposed system was found to outperform a baseline and a previous state of the art in an offline, human-judged evaluation.
著作権等: Copyright © 2021 Owner/Author
This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.
URI: http://hdl.handle.net/2433/276618
DOI(出版社版): 10.1145/3451883
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons