このアイテムのアクセス数: 226
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
3451883.pdf | 4.13 MB | Adobe PDF | 見る/開く |
タイトル: | Data-Driven Imitation Learning for a Shopkeeper Robot with Periodically Changing Product Information |
著者: | Doering, Malcolm Brščić, Dražen ![]() ![]() ![]() Kanda, Takayuki ![]() ![]() ![]() |
著者名の別形: | 神田, 崇行 |
キーワード: | database question answering knowledge base question answering Human-robot interaction imitation learning service robot retail robot social robot |
発行日: | Dec-2021 |
出版者: | Association for Computing Machinery (ACM) |
誌名: | ACM Transactions on Human-Robot Interaction |
巻: | 10 |
号: | 4 |
論文番号: | 31 |
抄録: | Data-driven imitation learning enables service robots to learn social interaction behaviors, but these systems cannot adapt after training to changes in the environment, such as changing products in a store. To solve this, a novel learning system that uses neural attention and approximate string matching to copy information from a product information database to its output is proposed. A camera shop interaction dataset was simulated for training/testing. The proposed system was found to outperform a baseline and a previous state of the art in an offline, human-judged evaluation. |
著作権等: | Copyright © 2021 Owner/Author This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License. |
URI: | http://hdl.handle.net/2433/276618 |
DOI(出版社版): | 10.1145/3451883 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス