このアイテムのアクセス数: 47

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
nhess-21-1667-2021.pdf9.36 MBAdobe PDF見る/開く
タイトル: Reconstruction of flow conditions from 2004 Indian Ocean tsunami deposits at the Phra Thong island using a deep neural network inverse model
著者: Mitra, Rimali
Naruse, Hajime  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-3863-3404 (unconfirmed)
Fujino, Shigehiro
著者名の別形: 成瀬, 元
発行日: May-2021
出版者: Copernicus GmbH
誌名: Natural Hazards and Earth System Sciences
巻: 21
号: 5
開始ページ: 1667
終了ページ: 1683
抄録: The 2004 Indian Ocean tsunami caused significant economic losses and a large number of fatalities in the coastal areas. The estimation of tsunami flow conditions using inverse models has become a fundamental aspect of disaster mitigation and management. Here, a case study involving the Phra Thong island, which was affected by the 2004 Indian Ocean tsunami, in Thailand was conducted using inverse modeling that incorporates a deep neural network (DNN). The DNN inverse analysis reconstructed the values of flow conditions such as maximum inundation distance, flow velocity and maximum flow depth, as well as the sediment concentration of five grain-size classes using the thickness and grain-size distribution of the tsunami deposit from the post-tsunami survey around Phra Thong island. The quantification of uncertainty was also reported using the jackknife method. Using other previous models applied to areas in and around Phra Thong island, the predicted flow conditions were compared with the reported observed values and simulated results. The estimated depositional characteristics such as volume per unit area and grain-size distribution were in line with the measured values from the field survey. These qualitative and quantitative comparisons demonstrated that the DNN inverse model is a potential tool for estimating the physical characteristics of modern tsunamis.
著作権等: © Author(s) 2021.
This work is distributed under the Creative Commons Attribution 4.0 License.
URI: http://hdl.handle.net/2433/276664
DOI(出版社版): 10.5194/nhess-21-1667-2021
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。