このアイテムのアクセス数: 81
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.amc.2021.126730.pdf | 821.91 kB | Adobe PDF | 見る/開く |
タイトル: | A thorough description of one-dimensional steady open channel flows using the notion of viscosity solution |
著者: | Mean, Sovanna Unami, Koichi ![]() ![]() ![]() Okamoto, Hisashi Fujihara, Masayuki ![]() ![]() ![]() |
著者名の別形: | 宇波, 耕一 藤原, 正幸 |
キーワード: | Open channel flow Viscosity solution Generalized solution Hydraulic jump Gradually varied flow |
発行日: | 15-Feb-2022 |
出版者: | Elsevier BV |
誌名: | Applied Mathematics and Computation |
巻: | 415 |
論文番号: | 126730 |
抄録: | Determining water surface profiles of steady open channel flows in a one-dimensional bounded domain is one of the well-trodden topics in conventional hydraulic engineering. However, it involves Dirichlet problems of scalar first-order quasilinear ordinary differential equations, which are of mathematical interest. We show that the notion of viscosity solution is useful in thoroughly describing the characteristics of possibly non-smooth and discontinuous solutions to such problems, achieving the conservation of momentum and the entropy condition. Those viscosity solutions are the generalized solutions in the space of bounded measurable functions. Generalized solutions to some Dirichlet problems are not always unique, and a necessary condition for the non-uniqueness is derived. A concrete example illustrates the non-uniqueness of discontinuous viscosity solutions in a channel of a particular cross-sectional shape. |
著作権等: | © 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. |
URI: | http://hdl.handle.net/2433/276878 |
DOI(出版社版): | 10.1016/j.amc.2021.126730 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス