このアイテムのアクセス数: 81

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.amc.2021.126730.pdf821.91 kBAdobe PDF見る/開く
タイトル: A thorough description of one-dimensional steady open channel flows using the notion of viscosity solution
著者: Mean, Sovanna
Unami, Koichi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-6910-1094 (unconfirmed)
Okamoto, Hisashi
Fujihara, Masayuki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-6868-0143 (unconfirmed)
著者名の別形: 宇波, 耕一
藤原, 正幸
キーワード: Open channel flow
Viscosity solution
Generalized solution
Hydraulic jump
Gradually varied flow
発行日: 15-Feb-2022
出版者: Elsevier BV
誌名: Applied Mathematics and Computation
巻: 415
論文番号: 126730
抄録: Determining water surface profiles of steady open channel flows in a one-dimensional bounded domain is one of the well-trodden topics in conventional hydraulic engineering. However, it involves Dirichlet problems of scalar first-order quasilinear ordinary differential equations, which are of mathematical interest. We show that the notion of viscosity solution is useful in thoroughly describing the characteristics of possibly non-smooth and discontinuous solutions to such problems, achieving the conservation of momentum and the entropy condition. Those viscosity solutions are the generalized solutions in the space of bounded measurable functions. Generalized solutions to some Dirichlet problems are not always unique, and a necessary condition for the non-uniqueness is derived. A concrete example illustrates the non-uniqueness of discontinuous viscosity solutions in a channel of a particular cross-sectional shape.
著作権等: © 2021 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license.
URI: http://hdl.handle.net/2433/276878
DOI(出版社版): 10.1016/j.amc.2021.126730
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons