このアイテムのアクセス数: 112
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
ptep_ptab091.pdf | 1.29 MB | Adobe PDF | 見る/開く |
タイトル: | Development of convolutional neural networks for an electron-tracking Compton camera |
著者: | Ikeda, Tomonori Takada, Atsushi ![]() ![]() ![]() Abe, Mitsuru Yoshikawa, Kei Tsuda, Masaya Ogio, Shingo Sonoda, Shinya Mizumura, Yoshitaka Yoshida, Yura Tanimori, Toru |
著者名の別形: | 池田, 智法 高田, 淳史 阿部, 光 吉川, 慶 津田, 雅弥 荻尾, 真吾 園田, 真也 水村, 好貴 吉田, 有良 谷森, 達 |
発行日: | Aug-2021 |
出版者: | Oxford University Press (OUP) Physical Society of Japan |
誌名: | Progress of Theoretical and Experimental Physics |
巻: | 2021 |
号: | 8 |
論文番号: | 083F01 |
抄録: | The Electron-Tracking Compton Camera (ETCC), which is a complete Compton camera that tracks Compton scattering electrons with a gas micro time projection chamber, is expected to open up MeV gamma-ray astronomy. The technical challenge for achieving several degrees of the point-spread function is precise determination of the electron recoil direction and the scattering position from track images. We attempted to reconstruct these parameters using convolutional neural networks. Two network models were designed to predict the recoil direction and the scattering position. These models marked 41° of angular resolution and 2.1 mm of position resolution for 75 keV electron simulation data in argon-based gas at 2 atm pressure. In addition, the point-spread function of the ETCC was improved to 15° from 22° for experimental data from a 662 keV gamma-ray source. The performance greatly surpassed that using traditional analysis. |
著作権等: | © The Author(s) 2021. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Funded by SCOAP3 |
URI: | http://hdl.handle.net/2433/276910 |
DOI(出版社版): | 10.1093/ptep/ptab091 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス