このアイテムのアクセス数: 108

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
1.1624075.pdf378.52 kBAdobe PDF見る/開く
タイトル: Numerical analysis of thermal-slip and diffusion-slip flows of a binary mixture of hard-sphere molecular gases
著者: Takata, Shigeru  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-6787-6777 (unconfirmed)
Yasuda, Shugo
Kosuge, Shingo  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-1850-8171 (unconfirmed)
Aoki, Kazuo
著者名の別形: 髙田, 滋
小菅, 真吾
発行日: Dec-2003
出版者: AIP Publishing
誌名: Physics of Fluids
巻: 15
号: 12
開始ページ: 3745
終了ページ: 3766
抄録: The thermal-slip (thermal-creep) and the diffusion-slip problems for a binary mixture of gases are investigated on the basis of the linearized Boltzmann equation for hard-sphere molecules with the diffuse reflection boundary condition. The problems are analyzed numerically by the finite-difference method incorporated with the numerical kernel method, which was first proposed by Sone, Ohwada, and Aoki [Phys. Fluids A 1, 363 (1989)] for a single-component gas. As a result, the behavior of the mixture is clarified accurately not only at the level of the macroscopic variables but also at the level of the velocity distribution function. In addition, accurate formulas of the thermal-slip and the diffusion-slip coefficients for arbitrary values of the concentration of a component gas are constructed by the use of the Chebyshev polynomial approximation.
著作権等: © 2003 American Institute of Physics
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in ’Physics of Fluids' 15(12), 3745-3766 (2003) and may be found at https://aip.scitation.org/doi/10.1063/1.1624075.
The full-text file will be made open to the public on 01 December 2004 in accordance with publisher's 'Terms and Conditions for Self-Archiving'
URI: http://hdl.handle.net/2433/278228
DOI(出版社版): 10.1063/1.1624075
関連リンク: http://hdl.handle.net/2433/7622
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。