このアイテムのアクセス数: 174
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
access.2022.3180178.pdf | 1.11 MB | Adobe PDF | 見る/開く |
タイトル: | Beamforming Feedback-Based Model-Driven Angle of Departure Estimation Toward Legacy Support in WiFi Sensing: An Experimental Study |
著者: | Itahara, Sohei Kondo, Sota Yamashita, Kota Nishio, Takayuki Yamamoto, Koji ![]() ![]() Koda, Yusuke |
著者名の別形: | 板原, 壮平 近藤, 綜太 山下, 皐太 西尾, 理志 山本, 高至 香田, 優介 |
キーワード: | Wireless sensing channel state information beamforming feedback MUSIC algorithm |
発行日: | 2022 |
出版者: | Institute of Electrical and Electronics Engineers (IEEE) |
誌名: | IEEE Access |
巻: | 10 |
開始ページ: | 59737 |
終了ページ: | 59747 |
抄録: | In this study, we experimentally validated the possibility of estimating the angle of departure (AoD) using multiple signal classification (MUSIC) with only WiFi control frames for beamforming feedback (BFF), defined in IEEE 802.11ac/ax. The examined BFF-based MUSIC is a model-driven algorithm that does not require a pre-obtained database. This is in contrast with most existing BFF-based sensing techniques, which are data-driven and require a pre-obtained database. Moreover, BFF-based MUSIC affords an alternative AoD estimation method without requiring access to the channel state information (CSI). Extensive experimental and numerical evaluations demonstrate that BFF-based MUSIC can successfully estimate the AoDs for multiple propagation paths. Moreover, the evaluations performed in this study reveal that BFF-based MUSIC, where BFF is a highly compressed version of CSI in IEEE 802.11ac/ax, achieves an error of AoD estimation that is comparable to that of CSI-based MUSIC. |
著作権等: | This work is licensed under a Creative Commons Attribution 4.0 License. |
URI: | http://hdl.handle.net/2433/278989 |
DOI(出版社版): | 10.1109/access.2022.3180178 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス