このアイテムのアクセス数: 174

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
access.2022.3180178.pdf1.11 MBAdobe PDF見る/開く
タイトル: Beamforming Feedback-Based Model-Driven Angle of Departure Estimation Toward Legacy Support in WiFi Sensing: An Experimental Study
著者: Itahara, Sohei
Kondo, Sota
Yamashita, Kota
Nishio, Takayuki
Yamamoto, Koji  KAKEN_id  orcid https://orcid.org/0000-0003-4106-3983 (unconfirmed)
Koda, Yusuke
著者名の別形: 板原, 壮平
近藤, 綜太
山下, 皐太
西尾, 理志
山本, 高至
香田, 優介
キーワード: Wireless sensing
channel state information
beamforming feedback
MUSIC algorithm
発行日: 2022
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: IEEE Access
巻: 10
開始ページ: 59737
終了ページ: 59747
抄録: In this study, we experimentally validated the possibility of estimating the angle of departure (AoD) using multiple signal classification (MUSIC) with only WiFi control frames for beamforming feedback (BFF), defined in IEEE 802.11ac/ax. The examined BFF-based MUSIC is a model-driven algorithm that does not require a pre-obtained database. This is in contrast with most existing BFF-based sensing techniques, which are data-driven and require a pre-obtained database. Moreover, BFF-based MUSIC affords an alternative AoD estimation method without requiring access to the channel state information (CSI). Extensive experimental and numerical evaluations demonstrate that BFF-based MUSIC can successfully estimate the AoDs for multiple propagation paths. Moreover, the evaluations performed in this study reveal that BFF-based MUSIC, where BFF is a highly compressed version of CSI in IEEE 802.11ac/ax, achieves an error of AoD estimation that is comparable to that of CSI-based MUSIC.
著作権等: This work is licensed under a Creative Commons Attribution 4.0 License.
URI: http://hdl.handle.net/2433/278989
DOI(出版社版): 10.1109/access.2022.3180178
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons