このアイテムのアクセス数: 126

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ace.22014.pdf1.57 MBAdobe PDF見る/開く
タイトル: Development and external validation of a deep learning-based computed tomography classification system for COVID-19
著者: Kataoka, Yuki
Baba, Tomohisa
Ikenoue, Tatsuyoshi
Matsuoka, Yoshinori
Matsumoto, Junichi
Kumasawa, Junji
Tochitani, Kentaro
Funakoshi, Hiraku
Hosoda, Tomohiro
Kugimiya, Aiko
Shirano, Michinori
Hamabe, Fumiko
Iwata, Sachiyo
Kitamura, Yoshiro
Goto, Tsubasa
Hamaguchi, Shingo
Haraguchi, Takafumi
Yamamoto, Shungo
Sumikawa, Hiromitsu
Nishida, Koji
Nishida, Haruka
Ariyoshi, Koichi
Sugiura, Hiroaki
Nakagawa, Hidenori
Asaoka, Tomohiro
Yoshida, Naofumi
Oda, Rentaro
Koyama, Takashi
Iwai, Yui
Miyashita, Yoshihiro
Okazaki, Koya
Tanizawa, Kiminobu
Handa, Tomohiro
Kido, Shoji
Fukuma, Shingo
Tomiyama, Noriyuki
Hirai, Toyohiro
Ogura, Takashi
著者名の別形: 片岡, 裕貴
池之上, 辰義
松岡, 由典
熊澤, 淳史
谷澤, 公伸
半田, 知宏
福間, 真悟
平井, 豊博
キーワード: COVID-19
Diagnosis
Computer-Assisted
Tomography
X-Ray Computed
Deep Learning
COVID-19 Nucleic Acid Testing
発行日: 2022
出版者: Society for Clinical Epidemiology
誌名: Annals of Clinical Epidemiology
巻: 4
号: 4
開始ページ: 110
終了ページ: 119
抄録: [BACKGROUND] We aimed to develop and externally validate a novel machine learning model that can classify CT image findings as positive or negative for SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR). [METHODS] We used 2, 928 images from a wide variety of case-control type data sources for the development and internal validation of the machine learning model. A total of 633 COVID-19 cases and 2, 295 non-COVID-19 cases were included in the study. We randomly divided cases into training and tuning sets at a ratio of 8:2. For external validation, we used 893 images from 740 consecutive patients at 11 acute care hospitals suspected of having COVID-19 at the time of diagnosis. The dataset included 343 COVID-19 patients. The reference standard was RT-PCR. [RESULTS] In external validation, the sensitivity and specificity of the model were 0.869 and 0.432, at the low-level cutoff, 0.724 and 0.721, at the high-level cutoff. Area under the receiver operating characteristic was 0.76. [CONCLUSIONS] Our machine learning model exhibited a high sensitivity in external validation datasets and may assist physicians to rule out COVID-19 diagnosis in a timely manner at emergency departments. Further studies are warranted to improve model specificity.
著作権等: © 2022 Society for Clinical Epidemiology
This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
URI: http://hdl.handle.net/2433/279165
DOI(出版社版): 10.37737/ace.22014
PubMed ID: 38505255
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons