このアイテムのアクセス数: 48
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
22-EJP825.pdf | 350.34 kB | Adobe PDF | 見る/開く |
タイトル: | On spectral distribution of sample covariance matrices from large dimensional and large k-fold tensor products |
著者: | Collins, Benoît ![]() ![]() ![]() Yao, Jianfeng Yuan, Wangjun |
キーワード: | 60B20 15B52 eigenvalue distribution large k-fold tensors Marčenko-Pastur law quantum information theory |
発行日: | 2022 |
出版者: | Institute of Mathematical Statistics |
誌名: | Electronic Journal of Probability |
巻: | 27 |
開始ページ: | 1 |
終了ページ: | 18 |
論文番号: | 22-EJP825 |
抄録: | We study the eigenvalue distributions for sums of independent rank-one k-fold tensor products of large n-dimensional vectors. Previous results in the literature assume that k=o(n) and show that the eigenvalue distributions converge to the celebrated Marčenko-Pastur law under appropriate moment conditions on the base vectors. In this paper, motivated by quantum information theory, we study the regime where k grows faster, namely k=O(n). We show that the moment sequences of the eigenvalue distributions have a limit, which is different from the Marčenko-Pastur law, and the Marčenko-Pastur law limit holds if and only if k=o(n) for this tensor model. The approach is based on the method of moments. |
著作権等: | Creative Commons Attribution License |
URI: | http://hdl.handle.net/2433/279255 |
DOI(出版社版): | 10.1214/22-EJP825 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス