このアイテムのアクセス数: 96

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
116.00000052.pdf2.63 MBAdobe PDF見る/開く
タイトル: Joint Chord and Key Estimation Based on a Hierarchical Variational Autoencoder with Multi-task Learning
著者: Wu, Yiming
Yoshii, Kazuyoshi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-8387-8609 (unconfirmed)
著者名の別形: 呉, 益明
吉井, 和佳
キーワード: Automatic chord estimation
automatic key estimation
variational autoencoder
multi-task learning
発行日: 21-Jun-2022
出版者: Now Publishers
誌名: APSIPA Transactions on Signal and Information Processing
巻: 11
号: 1
論文番号: e19
抄録: This paper describes a deep generative approach to joint chord and key estimation for music signals. The limited amount of music signals with complete annotations has been the major bottleneck in supervised multi-task learning of a classification model. To overcome this limitation, we integrate the supervised multi-task learning approach with the unsupervised autoencoding approach in a mutually complementary manner. Considering the typical process of music composition, we formulate a hierarchical latent variable model that sequentially generates keys, chords, and chroma vectors. The keys and chords are assumed to follow a language model that represents their relationships and dynamics. In the framework of amortized variational inference (AVI), we introduce a classification model that jointly infers discrete chord and key labels and a recognition model that infers continuous latent features. These models are combined to form a variational autoencoder (VAE) and are trained jointly in a (semi-)supervised manner, where the generative and language models act as regularizers for the classification model. We comprehensively investigate three different architectures for the chord and key classification model, and three different architectures for the language model. Experimental results demonstrate that the VAE-based multi-task learning improves chord estimation as well as key estimation.
著作権等: © 2022 Y. Wu and K. Yoshii
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence , which permits unrestricted re-use, distribution, and reproduction in any medium, for non-commercial use, provided the original work is properly cited.
URI: http://hdl.handle.net/2433/279280
DOI(出版社版): 10.1561/116.00000052
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons