このアイテムのアクセス数: 119

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.istruc.2022.11.007.pdf14.44 MBAdobe PDF見る/開く
タイトル: Two-step parameter identification of multi-axial cyclic constitutive law of structural steels from cyclic structural responses
著者: Ohsaki, Makoto  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-4935-8874 (unconfirmed)
Do, Bach
Fujiwara, Jun
Kimura, Toshiaki
Yamashita, Takuzo
著者名の別形: 大﨑, 純
キーワード: Multi-axial constitutive law
Cyclic loading
Parameter identification
Structural steels
Bayesian optimization
発行日: Dec-2022
出版者: Elsevier Ltd.
誌名: Structures
巻: 46
開始ページ: 2014
終了ページ: 2030
抄録: This paper presents a two-step Bayesian optimization (BO) method for identifying the elastoplastic material parameters of structural steels subjected to multi-axial cyclic loading. A series of simple elastic and elastoplastic shaking table tests is conducted for a structure that has a steel specimen experiencing elastoplastic response. An inverse problem is formulated to identify the multi-axial material parameters of the specimen from the structural responses obtained by the shaking table tests. This is notable because it is more difficult to carry out multi-axial static cyclic material tests than to conduct dynamic cyclic structural tests. The inverse problem minimizes the error between the measured structural responses and those simulated by finite element (FE) analysis. The two-step BO devised for solving the inverse problem successfully offers a global optimization framework while considerably reducing the number of costly simulations. It first seeks to infer Young’s modulus values from the cyclic elastic responses of the structure, thereby validating the FE model in its elastic state. It then finds the parameters for the nonlinear combined isotropic/kinematic hardening model of the specimen using the cyclic elastoplastic responses of the structure. Verification results show that the parameters identified by the proposed method well reproduce the cyclic responses of the structure under different cyclic loading conditions.
著作権等: © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
The full-text file will be made open to the public on 1 December 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/279377
DOI(出版社版): 10.1016/j.istruc.2022.11.007
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons