ダウンロード数: 52

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
mfeku_41_4_566.pdf339.31 kBAdobe PDF見る/開く
タイトル: Matrix Polynomial Expansion of a Power of a Matrix
著者: ANDO, Kazuaki
KONDO, Bunji
発行日: 29-Feb-1980
出版者: Faculty of Engineering, Kyoto University
誌名: Memoirs of the Faculty of Engineering, Kyoto University
巻: 41
号: 4
開始ページ: 566
終了ページ: 573
抄録: Any power of an n×n matrix can be expanded by a matrix polynomial of the order n-1, but the coefficients of expansion are not known in closed form. In this paper, it is shown that the coefficients of expansion are given by the solution of a simultaneous equation of the 1st order, whose coefficients compose the Vandermonde matrix. Using the properties of a generalized Vandermonde determinant, coefficients of an expansion of a power of the matrix are obtained in closed form. As the coefficients thus obtained are homogeneous polynomials of eigen-values, and as every term of the polynomial has the same sign, the upper bounds of the absolute values of the coefficients can be obtained easily, if all the eigen-values are located in a disk centered at the origin. If all the eigen-values of a transition matrix of a dynamical system are located in a disc with a radius less than 1 and centered at the origin, the dynamical system is exponentially stable. As the reachable subspace of a dynamical system is spanned by input constraint vectors, multiplied by powers of the transition matrix from the left, the results obtained make a bridge to connect the exponential stability property and the structure of the practically reachable subspace of a dynamical system.
URI: http://hdl.handle.net/2433/281127
出現コレクション:Vol.41 Part 4

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。