このアイテムのアクセス数: 94

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41598-022-11361-y.pdf1.56 MBAdobe PDF見る/開く
タイトル: Machine learning-based prediction of relapse in rheumatoid arthritis patients using data on ultrasound examination and blood test
著者: Matsuo, Hidemasa
Kamada, Mayumi  KAKEN_id
Imamura, Akari
Shimizu, Madoka
Inagaki, Maiko
Tsuji, Yuko
Hashimoto, Motomu
Tanaka, Masao  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-8942-2933 (unconfirmed)
Ito, Hiromu
Fujii, Yasutomo  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-2821-6079 (unconfirmed)
著者名の別形: 松尾, 英将
鎌田, 真由美
今村, 朱里
清水, 円
稲垣, 舞子
辻, 侑子
橋本, 求
田中, 真生
伊藤, 宣
藤井, 康友
キーワード: Machine learning
Rheumatoid arthritis
Ultrasound
発行日: 2022
出版者: Springer Nature
誌名: Scientific Reports
巻: 12
論文番号: 7224
抄録: Recent effective therapies enable most rheumatoid arthritis (RA) patients to achieve remission; however, some patients experience relapse. We aimed to predict relapse in RA patients through machine learning (ML) using data on ultrasound (US) examination and blood test. Overall, 210 patients with RA in remission at baseline were dichotomized into remission (n = 150) and relapse (n = 60) based on the disease activity at 2-year follow-up. Three ML classifiers [Logistic Regression, Random Forest, and extreme gradient boosting (XGBoost)] and data on 73 features (14 US examination data, 54 blood test data, and five data on patient information) at baseline were used for predicting relapse. The best performance was obtained using the XGBoost classifier (area under the receiver operator characteristic curve (AUC) = 0.747), compared with Random Forest and Logistic Regression (AUC = 0.719 and 0.701, respectively). In the XGBoost classifier prediction, ten important features, including wrist/metatarsophalangeal superb microvascular imaging scores, were selected using the recursive feature elimination method. The performance was superior to that predicted by researcher-selected features, which are conventional prognostic markers. These results suggest that ML can provide an accurate prediction of relapse in RA patients, and the use of predictive algorithms may facilitate personalized treatment options.
著作権等: © The Author(s) 2022
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
URI: http://hdl.handle.net/2433/281992
DOI(出版社版): 10.1038/s41598-022-11361-y
PubMed ID: 35508670
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons