Downloads: 50
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
s41598-023-34301-w.pdf | 4.33 MB | Adobe PDF | View/Open |
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yoshida, Kenta | en |
dc.contributor.author | Miyake, Akira | en |
dc.contributor.author | Okumura, Shota H. | en |
dc.contributor.author | Ishibashi, Hidemi | en |
dc.contributor.author | Okumura, Satoshi | en |
dc.contributor.author | Okamoto, Atsushi | en |
dc.contributor.author | Niwa, Yasuhiro | en |
dc.contributor.author | Kimura, Masao | en |
dc.contributor.author | Sato, Tomoki | en |
dc.contributor.author | Tamura, Yoshihiko | en |
dc.contributor.author | Ono, Shigeaki | en |
dc.contributor.alternative | 吉田, 健太 | ja |
dc.contributor.alternative | 三宅, 亮 | ja |
dc.contributor.alternative | 奥村, 翔太 | ja |
dc.contributor.alternative | 石橋, 秀巳 | ja |
dc.contributor.alternative | 奥村, 聡 | ja |
dc.contributor.alternative | 岡本, 敦 | ja |
dc.contributor.alternative | 丹羽, 尉博 | ja |
dc.contributor.alternative | 木村, 正雄 | ja |
dc.contributor.alternative | 佐藤, 智紀 | ja |
dc.contributor.alternative | 田村, 芳彦 | ja |
dc.contributor.alternative | 小野, 重明 | ja |
dc.date.accessioned | 2023-05-12T02:59:05Z | - |
dc.date.available | 2023-05-12T02:59:05Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | http://hdl.handle.net/2433/282060 | - |
dc.description | 軽石のナノスケール岩石学から福徳岡ノ場の新しい噴火モデルを提案 --マグマの酸化が噴火の引き金に--. 京都大学プレスリリース. 2023-05-10. | ja |
dc.description.abstract | Nanometer-sized crystals (nanolites) play an important role in controlling eruptions by affecting the viscosity of magmas and inducing bubble nucleation. We present detailed microscopic and nanoscopic petrographic analyses of nanolite-bearing and nanolite-free pumice from the 2021 eruption of Fukutoku-Oka-no-Ba, Japan. The nanolite mineral assemblage includes biotite, which is absent from the phenocryst mineral assemblage, and magnetite and clinopyroxene, which are observed as phenocrysts. The boundary between the nanolite-bearing brown glass and nanolite-free colorless glass is either sharp or gradational, and the sharp boundaries also appear sharp under the transmitted electron microscope. X-ray absorption fine structure (XAFS) analysis of the volcanic glass revealed that the nanolite-free colorless glass records an oxygen fugacity of QFM + 0.98 (log units), whereas the nanolite-bearing brown glass records a higher apparent oxygen fugacity (~ QFM + 2). Thermodynamic modelling using MELTS indicates that higher oxygen fugacities increase the liquidus temperature and thus induced the crystallization of magnetite nanolites. The hydrous nanolite mineral assemblage and glass oxygen fugacity estimates suggest that an oxidizing fluid supplied by a hot mafic magma induced nanolite crystallization in the magma reservoir, before the magma fragmentation. The oxidation-induced nanolite crystallization then enhanced heterogeneous bubble nucleation, resulting in convection in the magma reservoir and triggering the eruption. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.rights | © The Author(s) 2023 | en |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Geochemistry | en |
dc.subject | Petrology | en |
dc.subject | Volcanology | en |
dc.title | Oxidation-induced nanolite crystallization triggered the 2021 eruption of Fukutoku-Oka-no-Ba, Japan | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Scientific Reports | en |
dc.identifier.volume | 13 | - |
dc.relation.doi | 10.1038/s41598-023-34301-w | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 7117 | - |
dc.address | Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology | en |
dc.address | Department of Geology and Mineralogy, Kyoto University | en |
dc.address | Department of Geology and Mineralogy, Kyoto University | en |
dc.address | Department of Geoscience, Faculty of Science, Shizuoka University | en |
dc.address | Division of Earth and Planetary Materials Science, Department of Earth Science, Graduate School of Science, Tohoku University | en |
dc.address | Graduate School of Environmental Studies, Tohoku University | en |
dc.address | Institute of Materials Structure Science, High Energy Accelerator Research Organization | en |
dc.address | Institute of Materials Structure Science, High Energy Accelerator Research Organization | en |
dc.address | Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology | en |
dc.address | Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology | en |
dc.address | Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology | en |
dc.identifier.pmid | 37160932 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/ja/research-news/2023-05-10-0 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19K14825 | - |
datacite.awardNumber | 19H01999 | - |
datacite.awardNumber | 20H00198 | - |
datacite.awardNumber | 20H00205 | - |
datacite.awardNumber | 22K03755 | - |
datacite.awardNumber | 18KK0376 | - |
datacite.awardNumber | 19H00834 | - |
datacite.awardNumber | 22H05109 | - |
datacite.awardNumber | 21H01195 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K14825/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H01999/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H00198/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H00205/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22K03755/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18KK0376/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H00834/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-22H05109/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H01195/ | - |
dc.identifier.eissn | 2045-2322 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 固相微細組織の化学組成3D定量イメージングによる次世代型岩石学の開拓 | ja |
jpcoar.awardTitle | 酸化還元状態を考慮した冷たい沈み込み帯での吸水・脱水過程と流体移動経路の解明 | ja |
jpcoar.awardTitle | 電子線を用いた水素の高圧その場観察:地球深部の水循環の解明 | ja |
jpcoar.awardTitle | 太陽系始原物質形成・進化の統一モデルの構築 | ja |
jpcoar.awardTitle | 苦鉄質プリニー式噴火の火道浅部結晶化過程と破砕メカニズムの解明 | ja |
jpcoar.awardTitle | ナノ構造観察に基づく岩石-流体反応のマルチスケールモデルの構築 | ja |
jpcoar.awardTitle | X線顕微鏡と応用数学の融合による航空機用複合材料の破壊トリガーサイト特定 | ja |
jpcoar.awardTitle | データ記述科学を用いた材料解析とそのイノベーション展開 | ja |
jpcoar.awardTitle | 西之島はカルデラ噴火に移行するのか | ja |
Appears in Collections: | Journal Articles |
This item is licensed under a Creative Commons License