このアイテムのアクセス数: 141
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s10015-022-00832-0.pdf | 1.51 MB | Adobe PDF | 見る/開く |
タイトル: | Development of an epileptic seizure prediction algorithm using R–R intervals with self-attentive autoencoder |
著者: | Ode, Rikumo Fujiwara, Koichi ![]() ![]() Miyajima, Miho Yamakawa, Toshikata Kano, Manabu ![]() ![]() ![]() Jin, Kazutaka Nakasato, Nobukazu Sawai, Yasuko Hoshida, Toru Iwasaki, Masaki Murata, Yoshiko Watanabe, Satsuki Watanabe, Yutaka Suzuki, Yoko Inaji, Motoki Kunii, Naoto Oshino, Satoru Khoo, Ming, Hui Kishima, Haruhiko Maehara, Taketoshi |
著者名の別形: | 藤原, 幸一 加納, 学 |
キーワード: | Epilepsy Electrocardiogram Machine learning Self-attentive autoencoder |
発行日: | May-2023 |
出版者: | Springer Nature |
誌名: | Artificial Life and Robotics |
巻: | 28 |
号: | 2 |
開始ページ: | 403 |
終了ページ: | 409 |
抄録: | Epilepsy is a neurological disorder that may affect the autonomic nervous system (ANS) from 15 to 20 min before seizure onset, and disturbances of ANS affect R–R intervals (RRI) on an electrocardiogram (ECG). This study aims to develop a machine learning algorithm for predicting focal epileptic seizures by monitoring R–R interval (RRI) data in real time. The developed algorithm adopts a self-attentive autoencoder (SA-AE), which is a neural network for time-series data. The results of applying the developed seizure prediction algorithm to clinical data demonstrated that it functioned well in most patients; however, false positives (FPs) occurred in specific participants. In a future work, we will investigate the causes of FPs and optimize the developing seizure prediction algorithm to further improve performance using newly added clinical data. |
著作権等: | © The Author(s) 2022 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. |
URI: | http://hdl.handle.net/2433/283092 |
DOI(出版社版): | 10.1007/s10015-022-00832-0 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス