このアイテムのアクセス数: 168

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.iass.2022.016.pdf772.38 kBAdobe PDF見る/開く
タイトル: Assembly sequence optimization of spatial trusses using graph embedding and reinforcement learning
著者: Hayashi, Kazuki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-4026-8234 (unconfirmed)
Ohsaki, Makoto  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-4935-8874 (unconfirmed)
Kotera, Masaya
著者名の別形: 林, 和希
大﨑, 純
小寺, 正也
キーワード: ASSEMBLY SEQUENCE OPTIMIZATION
GRAPH EMBEDDING
MACHINE LEARNING
REINFORCEMENT LEARNING
TRUSS
発行日: 1-Dec-2022
出版者: International Association for Shell and Spatial Structures (IASS)
誌名: Journal of International Association for Shell and Spatial Structures
巻: 63
号: 214
開始ページ: 232
終了ページ: 240
抄録: We consider a truss as a graph consisting of nodes and edges, and combine graph embedding (GE) and reinforcement learning (RL) to develop an agent for generating a stable assembly path for a truss with arbitrary configuration. GE is a method of embedding the features of a graph into a vector space. By using GE, the agent can obtain numerical information on neighboring members and nodes considering their connectivity. Since the stability of a structure is strongly affected by the relative positions of members and nodes, feature extraction by GE should be effective in considering the stability of a truss. The proposed method not only can train agents using trusses with arbitrary connectivity but also can apply trained agents to trusses with arbitrary connectivity, ensuring the versatility of the trained agents' applicability. In the numerical examples, the trained agents are verified to find rational assembly sequences for various trusses more than 1000 times faster than metaheuristic approaches. The trained agent is further implemented as a user-friendly component compatible with 3D modeling software.
著作権等: Copyright © 2022 by Kazuki Hayashi, Makoto Ohsaki and Masaya Kotera
The full-text file will be made open to the public on 1 December 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.
URI: http://hdl.handle.net/2433/283358
DOI(出版社版): 10.20898/j.iass.2022.016
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。