このアイテムのアクセス数: 128

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
aijjse.69B.0_129.pdf1.58 MBAdobe PDF見る/開く
タイトル: Deep deterministic policy gradient and graph convolutional networks for topology optimization of braced steel frames
著者: KUPWIWAT, Chi-tathon
IWAGOE, Yuichi
HAYASHI, Kazuki  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-4026-8234 (unconfirmed)
OHSAKI, Makoto  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-4935-8874 (unconfirmed)
著者名の別形: 岩越, 雄一
林, 和希
大﨑, 純
キーワード: Topology optimization
Plane building frame
Reinforcement learning
Deep deterministic policy gradient
Graph representation
Graph convolutional network
発行日: 2023
出版者: 構造工学委員会
誌名: 構造工学論文集B
巻: 69B
開始ページ: 129
終了ページ: 139
抄録: We propose a method for topology optimization of braced frames under static seismic loads using Deep Deterministic Policy Gradient (DDPG) and Graph Convolutional Network (GCN). The structure is interpreted as a graph where structural elements and element configurations are represented by the node feature matrix and adjacency matrices, respectively. Using this graph representation, the DDPG agent with GCN architecture can observe the properties of the frame, and make the decision to either add braces into the frame or enlarge sections of frame elements by selecting from a list of available sections. During the optimization process, the initial structure that cannot withstand the seismic load is modified by the agent until all constraints are satisfied. The trained agent can be applied to frames of different sizes and can obtain competitive results with less computational cost compared to the genetic algorithm.
著作権等: © 2023 Architectural Institute of Japan
This article is deposited under the publisher's permission.
URI: http://hdl.handle.net/2433/283984
DOI(出版社版): 10.3130/aijjse.69B.0_129
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。