このアイテムのアクセス数: 128
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
aijjse.69B.0_129.pdf | 1.58 MB | Adobe PDF | 見る/開く |
タイトル: | Deep deterministic policy gradient and graph convolutional networks for topology optimization of braced steel frames |
著者: | KUPWIWAT, Chi-tathon IWAGOE, Yuichi HAYASHI, Kazuki ![]() ![]() ![]() OHSAKI, Makoto ![]() ![]() ![]() |
著者名の別形: | 岩越, 雄一 林, 和希 大﨑, 純 |
キーワード: | Topology optimization Plane building frame Reinforcement learning Deep deterministic policy gradient Graph representation Graph convolutional network |
発行日: | 2023 |
出版者: | 構造工学委員会 |
誌名: | 構造工学論文集B |
巻: | 69B |
開始ページ: | 129 |
終了ページ: | 139 |
抄録: | We propose a method for topology optimization of braced frames under static seismic loads using Deep Deterministic Policy Gradient (DDPG) and Graph Convolutional Network (GCN). The structure is interpreted as a graph where structural elements and element configurations are represented by the node feature matrix and adjacency matrices, respectively. Using this graph representation, the DDPG agent with GCN architecture can observe the properties of the frame, and make the decision to either add braces into the frame or enlarge sections of frame elements by selecting from a list of available sections. During the optimization process, the initial structure that cannot withstand the seismic load is modified by the agent until all constraints are satisfied. The trained agent can be applied to frames of different sizes and can obtain competitive results with less computational cost compared to the genetic algorithm. |
著作権等: | © 2023 Architectural Institute of Japan This article is deposited under the publisher's permission. |
URI: | http://hdl.handle.net/2433/283984 |
DOI(出版社版): | 10.3130/aijjse.69B.0_129 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。