Downloads: 77
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
j.isci.2023.107135.pdf | 4.13 MB | Adobe PDF | View/Open |
Title: | TRIAC disrupts cerebral thyroid hormone action via negative feedback and heterogenous distribution among organs |
Authors: | Yamauchi, Ichiro https://orcid.org/0000-0002-4236-502X (unconfirmed) Hakata, Takuro Ueda, Yohei Sugawa, Taku Omagari, Ryo Teramoto, Yasuo Nakayama, Shoji F. Nakajima, Daisuke Kubo, Takuya Inagaki, Nobuya |
Author's alias: | 山内, 一郎 伯田, 琢郎 植田, 洋平 須川, 琢 大曲, 遼 寺本, 康生 中山, 祥嗣 中島, 大介 久保, 拓也 稲垣, 暢也 |
Keywords: | Chemical substance Endocrine disrupter Biochemistry Endocrine system physiology |
Issue Date: | 21-Jul-2023 |
Publisher: | Elsevier BV |
Journal title: | iScience |
Volume: | 26 |
Issue: | 7 |
Thesis number: | 107135 |
Abstract: | As 3, 3′, 5-triiodothyroacetic acid (TRIAC), a metabolite of thyroid hormones (THs), was previously detected in sewage effluent, we aimed to investigate exogenous TRIAC’s potential for endocrine disruption. We administered either TRIAC or 3, 3′, 5-triiodo-L-thyronine (LT3) to euthyroid mice and 6-propyl-2-thiouracil-induced hypothyroid mice. In hypothyroid mice, TRIAC administration suppressed the hypothalamus-pituitary-thyroid (HPT) axis and upregulated TH-responsive genes in the pituitary gland, the liver, and the heart. We observed that, unlike LT3, TRIAC administration did not upregulate cerebral TH-responsive genes. Measurement of TRIAC contents suggested that TRIAC was not efficiently trafficked into the cerebrum. By analyzing euthyroid mice, we found that cerebral TRIAC content did not increase despite TRIAC administration at higher concentrations, whereas serum levels and cerebral contents of THs were substantially decreased. Disruption by TRIAC is due to the additive effects of circulating endogenous THs being depleted via a negative feedback loop involving the HPT axis and heterogeneous distribution of TRIAC among different organs. |
Description: | 甲状腺ホルモンアナログTRIACに注意 --新たな機序を介した内分泌かく乱作用を発見--. 京都大学プレスリリース. 2023-07-10. |
Rights: | © 2023 The Author(s). This is an open access article under the CC BY-NC-ND license. |
URI: | http://hdl.handle.net/2433/284042 |
DOI(Published Version): | 10.1016/j.isci.2023.107135 |
PubMed ID: | 37408688 |
Related Link: | https://www.kyoto-u.ac.jp/ja/research-news/2023-07-10-0 |
Appears in Collections: | Journal Articles |
This item is licensed under a Creative Commons License